

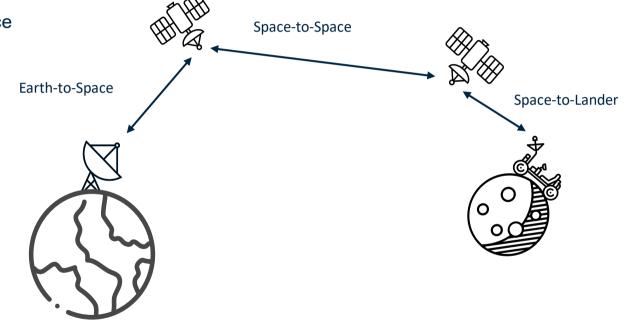
Enhancements and Redesign of the Iris Radio

Tom Russell Dana Sorensen

Traditional Comms Requirement for Deep Space SmallSat Missions

- Primarily communicate with the DSN
 - S-Band, X-Band and Ka Band
 - Full duplex coherent operation
 - Moderate bit rates 10 bps 10 Mbps
 - Radiometric ranging
- Small hardware package
 - Typically 1U or less
 - Weight ~500-1,000 grams
- Radiation Tolerance
 - Class C or D requirements
 - > 25 krad minimum with > 100 krad desired
- Low cost without losing too many features

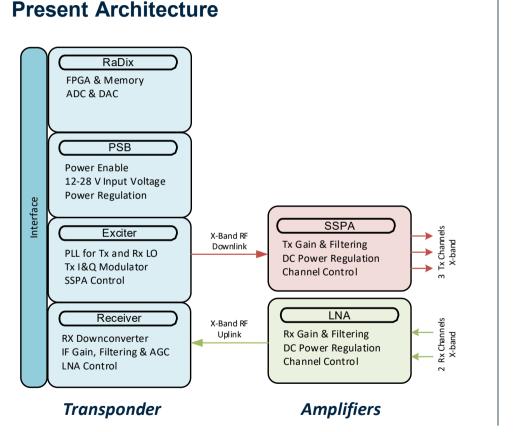
Iris Radio Meets Traditional Requirements

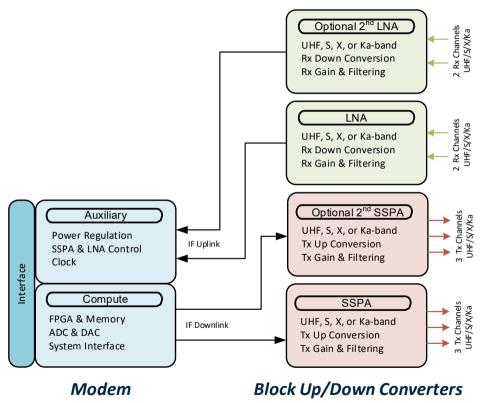

- Communication with the Deep Space Network
 - All modes and features are tested for compliance at DTF-21
- Size 1U x 1U x 56mm, ~1 kg
- Radiation tolerant to ~37 krad
- Full-duplex X-band direct-to-earth only
- Value
 - Reliable
 - No mission using Iris radio has failed due to comms failure
 - Quality maintained by 99+% inhouse design and build
 - Cost is competitive within DSN communication market

More Demanding Comms Requirements Expected

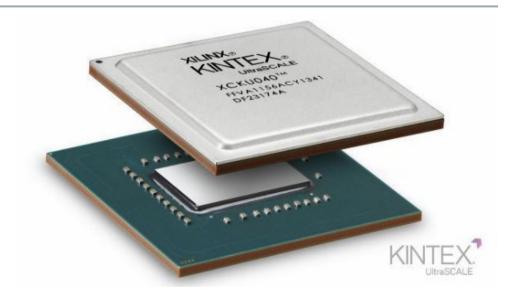
- Previously only concerned about direct-to-earth requirements
- Now we need to consider:
 - Satellite to Satellite
 - Satellite to Lunar or Planetary Surface
 - Constellation Flying
 - Higher Data Rates
 - More Accurate Ranging
 - Precision Timing
 - Deeper Space Missions
 - Longer Missions
 - More Severe Environments
 - Store and Forward
 - Delay-Tolerant Networking
 - Shorter Program Timelines
 - Smaller Budgets
- Did we miss any?

Tailoring Iris to Meet New Mission Requirements


- Custom configurations and features to meet mission needs
 - Features added by one mission are available for other missions
- Past examples of mission-driven customizations:
 - CSAC one-way ranging
 - Regenerative two-way ranging
 - Time transfer
 - Specialized waveforms
 - Encryption (NASA-STD-1006)
 - Reversed-band operation
 - Amplifier power adjustments
 - Many others
- However, future improvements are limited by present hardware capabilities
 - FPGA, memory, and other hardware limitations
 - Adding frequency bands requires significant transponder redesign

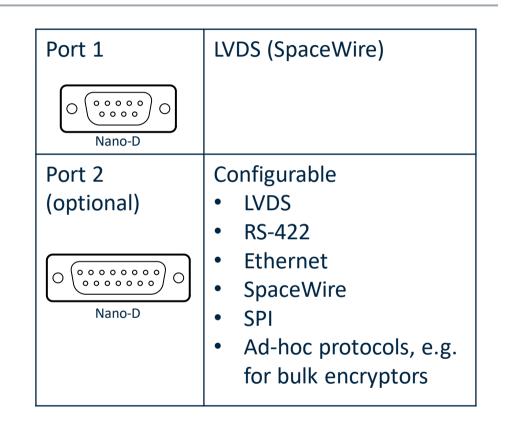


Revised Iris Radio Hardware


Revised Architecture

Updated Modem Details

- Reduced from four to two layers (~40% size reduction)
- New FPGA
 - Reduced power consumption
 - Approximately 4x fabric
 - Supports multi-channel modem
- New Memory
 - Increased from 32 Mb to up to 8 Gb
 - MRAM-based, non-volatile
 - Inherently immune to radiation
- New Transmit Architecture
 - Use one DAC per Tx channel instead of three DACs
 - Reduced power consumption, cost
 - Higher bandwidth
- New Clock
 - Higher stability
 - Tunable



Spacecraft Hardware Interface Improvements

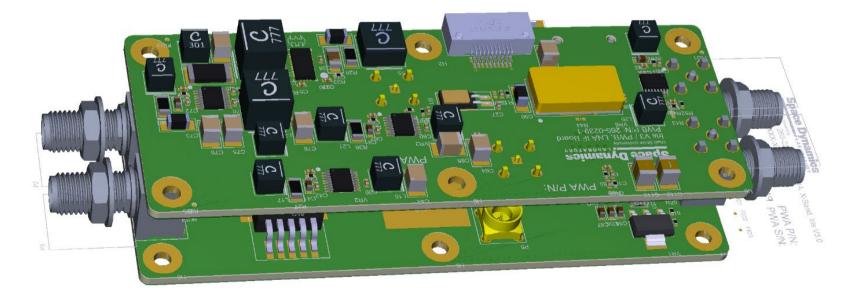
- Current Iris only supports SpaceWire or SPI
- New interface has dedicated LVDS (SpaceWire) port and optional flexible second port
- Flexible command/data interfacing, for example:
 - Separate configuration and data interfaces
 - Two independent data interfaces (useful with dual-channel operation)
- Increased bus voltage range: 12 38 V
- Better connectors
 - SMPM-T
 - Nano-D

SSPA Standardization: Two Board Assembly

- Auxiliary Board—Common Functions
 - Modem Interface
 - Power Supplies
 - IF Conditioning

- RF Board—Frequency Specific Functions
 - Upconversion to desired band
 - RF Amplification
 - Spectral Filters
 - Isolators

Updated SSPA Details


- DC power supplied directly from the spacecraft bus supply
 - Higher efficiency—less converter loss
 - Use of GaN possible—higher output power available
 - Less heat in the transponder
 - Greater flexibility in the design process
- Two or three output channels—only one active
- SSPA power out as required for the mission
 - Standard power levels being considered:
 - UHF +40 dBm | S-Band +37 dBm | X-Band +36 dBm | Ka-Band +33 dBm
 - Other bands and power levels possible including non DSN Channels
- Isolator/Circulator prevents most integration mishaps
- Common IF & LO configurations
- Adjustable output power
- Operation from -25 C to +60 C

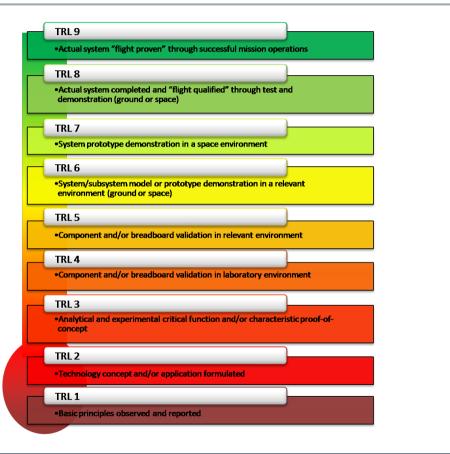
LNA Standardization: Two Board Assembly

- Auxiliary Board—Common Functions
 - Modem Interface
 - Power Supplies
 - IF Conditioning

- RF Board—Frequency Specific Functions
 - Noise Match
 - RF Gain
 - RF Filtering
 - Downconversion to IF

Updated LNA Details

- DC power supplied directly from the spacecraft bus supply
 - Greater flexibility in the design process
- Two Channels—Only one active
- Other bands and power levels possible including non DSN channels
- Common IF & LO configurations
- Noise Figure 2 dB Maximum / <1 dB typical
- SAW Filtering 14 MHz receive bandwidth
- Input Tolerance
 - 0d Bm without damage
 - -60 dBm operational
- Operational Temperature -30 C to +60 C


Spacecraft Software Interface Improvements

 Uses standard CCSDS Space Packets 	-Header
 Loosely based on SCPI protocol 	RX:CMD
– "RX:CMD:SYM RATE 2e3"	RX:CMD:PCM/PSK/PM
 All parameters/telemetry use engineering units 	RX:CMD:PCM/PM
	RX:CMD:BPSK
 dB, °C, Hz, degrees, etc. 	RX:CMD:SYM_RATE
 Clear interactions between parameters 	RX:CMD:CODING
 Extensive verification of each parameter and mode 	RX:CMD:FRAME_TYPE
	RX:CMD:LOOP_BW
 Human-readable error messages 	RX:CMD:LOCKED
 Easy to add new configuration 	RX:CMD:LOCK_THRESH
modes/parameters/commands/telemetry	RX:CMD:LOCK_VALUE
Easy to test!	RX:CMD:EBN0
	RX:CMD:BUF_SIZE
	RX:CMD:BUF_COUNT
	RX:CMD:DROP_COUNT
	RX:CMD:OVERFLOW_CO
	RX:CMD:CODEBLOCK_C

Header	Data
RX:CMD	1
RX:CMD:PCM/PSK/PM	1
RX:CMD:PCM/PM	0
RX:CMD:BPSK	0
RX:CMD:SYM_RATE	1999.997
RX:CMD:CODING	BCH-SEC
RX:CMD:FRAME_TYPE	TC
RX:CMD:LOOP_BW	16.5
RX:CMD:LOCKED	1
RX:CMD:LOCK_THRESH	0.08
RX:CMD:LOCK_VALUE	0.49
RX:CMD:EBN0	8.72
RX:CMD:BUF_SIZE	253
RX:CMD:BUF_COUNT	4
RX:CMD:DROP_COUNT	0
RX:CMD:OVERFLOW_COUNT	0
RX:CMD:CODEBLOCK_COUNT	987

Tech Readiness Level

- Updates currently internally funded
- Expect TRL 4 by Summer 2024
- Expect TRL 6 by Summer 2025
- Schedule dependent on mission needs

New Mission Opportunities

- Updates enable new mission architectures
 - Ranging in S band with simultaneous comms in X/Ka band
 - Spacecraft-to-spacecraft ranging
 - Enhanced one-way ranging
 - Reversed frequency channel for satellite crosslinks, with regular channel for DTE
 - Relay orbiter with UHF (Prox-1) to lander and X/Ka DTE
 - Bent pipe relay operation
 - Delay-tolerant relay network
 - Architectures requiring precision timing and time transfer
- Did we miss any?

