

University of Arizona Tucson, AZ 30 April – 2 May 2024

Session B: Propulsion Technologies, Solar Sail Technologies, and Launching Capabilities

B.6 Exquadrum's FORGE
Development & Test Site: Current &
Future Propulsion Testing
Capabilities

Eric Schmidt, President David Morrison, Director T&E

Innovation is Essential to Exquadrum

EXQUADRUM

In pseudo-Latin, "Exquadrum" means "outside the box" – as in "thinking outside the box"

Founded in 2002 on the principles of technology innovation and intellectual property through Research & Development

Specializing in rocket propulsion

and energetics innovation

■ Solid/Liquid/Hybrid /Space Propulsion Rocket R&D Propellant & Rocket **Testing &** Energetics R&D and **Propulsion** Production **Technical** Other Engineering **Services** R&D ■ High-Precision Manufacturing and Fabrication

Business Sectors

Eric Schmidt
President & Co-Founder

Kevin E. Mahaffy CEO & Co-Founder

ξΒΛ ¦

U.S. Small Business Administration 8(a) Certified

Graduation: 2030

NAICS: 541715, 541330, 561210

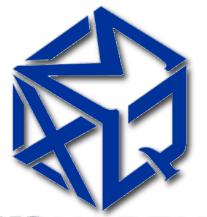
Exquadrum Continues to Grow in both the R&D and Technical Services Divisions

Facility Clearance Level

- TOP SECRET
- Safeguarding: SECRET

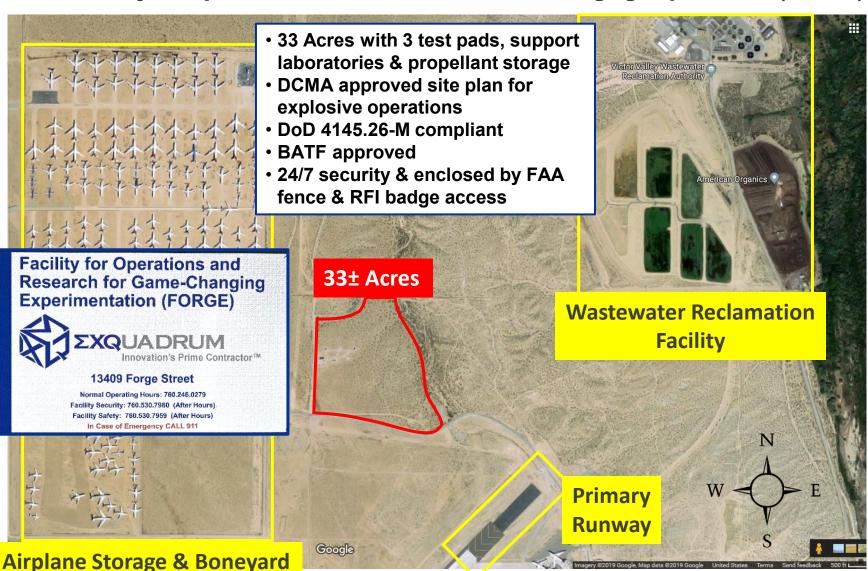
Exquadrum Has Significant Customers and Teammates

Tibbetts Award Winner for Excellence in DoD Small Business Technology



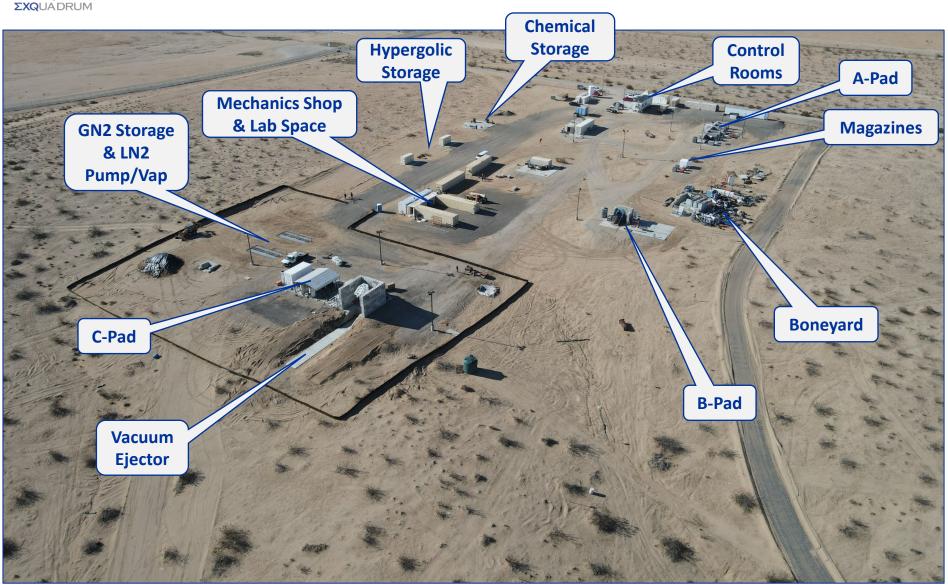
(CENESA) DYNAMICE

Ordnance and Tactical Systems



Location of FORGE

Facility for Operations and Research in Game-changing Experiments (FORGE)



FORGE Aerial (Facing Northeast)

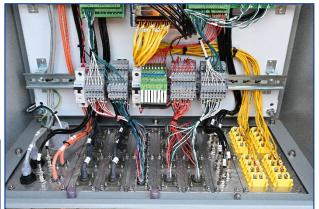
FORGE Aerial (Facing Southwest)

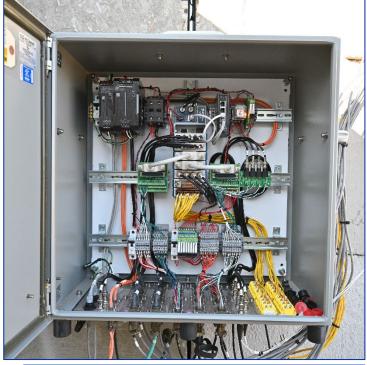
Control Room Data Acquisition & Capabilities

- National Instruments hardware
- LabVIEW-based test operations
- Remote control of hazardous ops
- IRIG-B (GPS Sync)
- Fire control (Red crew lock-out)
- E-Stop fail-safe control
- UPS to ensure safe shutdown

- Video & Photo
 - PTZ facility cameras (5)
 - Hi-speed (100k frames/sec)
 - FLIR
 - 4k/8k video & photo

Highly Reconfigurable & Rapidly Deployable





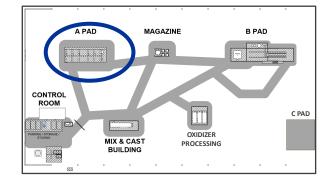
Test Cell Data Acquisition Systems

- National Instruments based hardware
- FPGA test cell DACs
 - CompactDAQ & CompactRIO Based
 - Real-time OS
- Fiberoptic network back to Control Rooms
- Multi-Chassis time synchronization
- Maximum Channel Capability
 - High-Speed: 128
 - Bridge Completion Analog: 40
 - Temp: 128
 - RTD: 32
 - Digital I/O: 192
 - Analog I/O: 192
- Sample Rates
 - Up to 500k hz

Highly Reconfigurable & Scalable

A Pad – Prototype & Component Testing

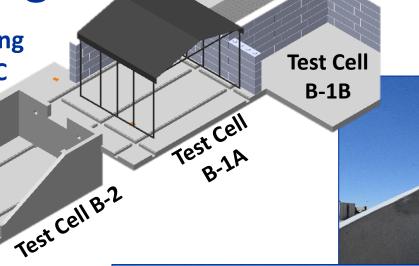
Component Level/Prototype Testing

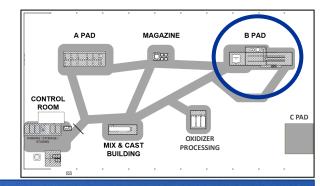

- **Five Modular Component Level Test Cells**
- 1,500 lbf thrust
- 1,500 lbm 1.3C

Modular "LEGO" style eco-blocks are reconfigured to customize test cells on a per program basis

Each test cell is supported by feed & pressure systems routed through the modular eco-blocks

EXQUADRUM


B Pad – Large Rocket


Testing

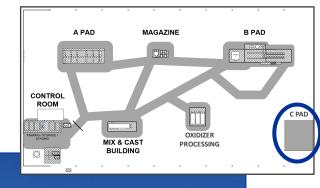
Engine/Stage Testing

10,000 lbm 1.3C

TMS: 3 DOF

Recent & Future Programs

- Flight system tubing water/hypergolic hammer effects
- Lunar lander hypergolic propulsion module checkout
- Hypergolic main engine combustion verification
- Tactical SRM V&V



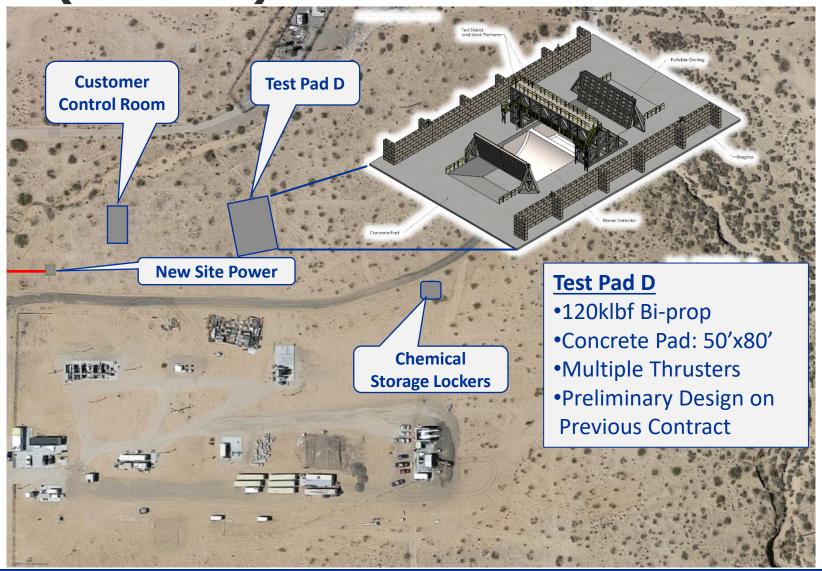
C Pad – Hypergolic Testing

- **Experienced personnel**
- Fully permitted & approved
- **SCAPE** capable
- **Storage for fuels & oxidizers**
- 1000's of test firings

Vacuum Test Capabilities

- 10 min test
- **0.1** psi
- 1,000 lbf bi-prop engine
- **GN2** motive gas

Test Cell C-2: Atmospheric Testing



The Future of FORGE - Three Phase Master Plan

Proposed Northern Expansion (Phase 2)

Proposed Southern Expansion (Phase 2)

Conclusions - Wrap Up

- Exquadrum has been testing rockets and energetic systems for over 20 years.
 - Founders have been designing, building, and testing rockets for cumulative 60+ years.
- Exquadrum is able to test solid rocket motors, cryogenics, and hypergolics.
- Exquadrum's vacuum systems continue to evolve for space-based rocket applications.
- Exquadrum plans to be the largest independent hypergolic test facility in the world.

Eric E. Schmidt President & Cofounder Exquadrum, Inc.

eric.schmidt@exquadrum.com (760) 530-7922

David Morrison Director, Test & Evaluation Exquadrum, Inc.

david.morrison@exquadrum.com (760) 530-7956