

Cockrell School of Engineering

Crater-Based Navigation and Timing for Small Satellites in Low-Lunar Orbit Interplanetary Small Satellite Conference

Brandon A. Jones, Renato Zanetti, Sofia Catalan, Rachael Gold, Z McLaughlin May 2-3, 2022

This work is funded under NASA Cooperative Agreement (CA) 80NSSC20M0087 as part of the Small-satellite Technology Partnership (STP) Program

Current State-of-the-Art

- Overtaxed ground-base systems Deep Space Network
- SWaP incompatible with small satellite pulsar-based navigation
- Requires communication with additional spacecraft satellite cross-link communication (e.g., LiAISON)
- Optical tracking of spacecraft/bodies with known ephemerides JPL's AutoNav, Orion optical navigation for Artemis

Optical navigation of craters provides a software-based solution to PNT with the use of a camera (low SWaP).

Overview of CNT System

The University of Texas at Austin Cockrell School of Engineering

Brief History of Lunar Crater-based Navigation

 Initial studies in support of Constellation Program

Jones (2008); Hanak (2009); Singh and Lim (2008); Osenar et al. (2008); Getchius et al. (2008)

- Ongoing studies on Terrain Relative Navigation (TRN) for landing Downes et al. (2021); McCabe and DeMars (2019); Shoemaker et al. (2022)
- Orion optical tracking of moon for navigation in cislunar space

Christian and Lightsey (2009); Christian (2009); Holt et al. (2018)

Image Processing Trades

- Navigation update rate: 5 sec.
- Unoptimized CNN will execute on Jetson TX2/Xavier in required time
- Ongoing work to optimize neural network for less-capable processor
- Leveraging experience with neural network optimization for JSC Seeker-1 mission

Detector Training Pipeline

- Image processing through Mask R-CNN and OpenCV enables the detection of multiple craters in the camera field of view
- With an automated and iterative pipeline, a trained detector model is built using image samples from the LROC Global Morphologic Maps

The University of Texas at Austin Cockrell School of Engineering

Detector Performance Illustration

Crater Catalog and Identification

Robbins lunar crater database

- ~1.3 million craters
- Incorporates measurements from NASA LRO and JAXA SELENE missions

Filter Position Estimation

Cases	x (km)	y (km)	z (km)	3D (km)
Dark Side 0	0.044	0.041	0.009	0.061
Dark Side 1	0.032	0.045	0.040	0.069
Dark Side 2	0.078	0.076	0.050	0.120
Dark Side 3	0.079	0.078	0.024	0.114

Time Bias Estimation

- Assumption: Asset will have some, possibly infrequent, contact with the ground.
- Ground-based tracking and POD solution may be used to generate a predicted ephemeris
- On-board clock bias/drift may be asynchronously estimated as predicted ephemeris is available

Time Bias Performance

Asynchronous operation of time bias estimation

Current efforts are looking to remove the need for uploaded ephemeris

CNT System Dependencies

- 1. Camera with sufficient resolution
 - Capable of resolving craters at desired orbit altitude(s)
- 2. Intermittent communication with ground/operator
 - Only required for time-bias estimation
 - Current efforts underway to remove this need
- 3. Core Flight System (cFS)-based runtime environment (optional)
 - Software written in C/C++
 - Can be ported to other real-time environments
- 4. CPU bandwidth for image processing

Moving Forward

- Continue testing of integrated solution to increase TRL
- SCOPE mission in development to demonstrate key components in LEO
 Algorithms and computation needs/requirements
- New method in development to remove need for ground-based tracking for time bias estimation
- Enhance detector performance (precision, recall, and centroid accuracy)

THANK YOU

Brandon A. Jones, Assistant Professor brandon.jones@utexas.edu https://sites.utexas.edu/bajones

- Catalan, S., J.M. McCabe, and B.A. Jones, "Implementation of Machine Learning Methods for Crater-based Navigation", 2021 AIAA/AAS Astrodynamics Specialist Conference, August 9-11, 2021.
- McLaughlin, Z.R., R.E. Gold, S.G. Catalan, B.A. Jones, and R. Zanetti, "Crater Navigation and Timing for Autonomous Lunar Orbital Operations in Small Satellites", 44th Annual AAS Guidance, Navigation, and Control (GN&C) Conference, Feb. 4-9, 2022.