

First Steps Towards Lunar Settlements: Small Multirobot Chains For Landing Pad Construction

Jekan Thangavelautham*, Yinan Xu Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation Systems (ASTEROIDS) Laboratory University of Arizona

Outline

- Motivation
- Launch and Landing Pads
- Challenges
- Objectives
- Approach
- Results
- Summary
- Future Work

Motivation

Motivation

- Refueling base at various locations in cis Lunar space
- <u>Water electrolyzed to produce</u> H_2 and O_2
- <u>Fuel and raw material for</u> transport, construction and manufacturing

Motivation

- How to practically extract resources at large scale
 - Full automation
 - Self-encapsulated
 - Extensible
 - Minimal functionality
- Can we seek out exemplars from the bio-world ?
 - What can we mimic ?
 - What do we discard ?

Importance of Launch and Landing Pads

- Quick means of transport of goods, services, astronauts to mining sites and outposts will be critical.
- Launch and landing pads will be the main gateway into the base and needs to be in excellent condition.
- Withstand high demand use
- Handle heavy and uneven loading/unloading.

Challenges

- Low gravity low traction \rightarrow low speeds
- Low cohesion sand/dust \rightarrow increased wear and tear

Keys to Lunar Base Robotics

- Autonomous Control
 - Unstructured environments
 - Minimal supervision and task decomposition
 - In-situ adaptation
- Multiple robots
 - Cooperation
 - Specialization
 - Redundancy
 - <u>Ability to improvise</u>
- Control development

• Adaptive, robust, little or no onsite support

From Excavation to Construction

• Papers being presented at Earth and Space, 2022

Objective

- Develop an autonomous robotic system to construct Lunar Landing Pads (LLP).
- Thrusts: What are the interaction behaviors needed to attain a desired global behavior for a given number of robots ?
 - Effective templates
 - Effective stigmergy (communication mediated via environment)
 - Minimal human input
 - How to deal with *antagonism*? negative interaction with too many robots

<u>Scalable autonomy</u>

Approach

- Biologically inspired ideas suited for design of space robotic systems
- Model of natural selection:
 - Evolutionary Algorithms [Rechenberg, 1971], [Holland, 1975]

Approach

- Biologically inspired ideas suited for design of space robotic systems
- Model of natural selection:
 - Evolutionary Algorithms [Rechenberg, 1971], [Holland, 1975]

The Engineering Model: Social Insects

- "Whole greater than the sum of the parts" -Koffka
- Solve a complex task using many individuals.
- Individuals are simple, low-cost, disposable.
- They have survived for 400+ million years through 2 major extinction events.

The Engineering Model: Social Insects

- Stigmergy
- Templates
- Self-organization

Computation Intelligence for Constructing LLPs

- Effective task decomposition
 - Task allocation multiple robots
- Find solutions where little task domain knowledge available
 - Plastic
 - Creative
 - Extensible
 - Robust, scalable, multiplatform

Artificial Neural Tissues

[Thangavelautham & D'Eleuterio, 2005]

Neural Regulation

ANT Topology

Synaptic Connections

Neural Regulation within ANT

Landing Pad Construction Robot

Chaining

Why Chaining and Aggregation ?

- Chaining is form of an aggregation strategy
- Requires close coordination but provides x advantage
- Ancient Romans used Turtle Formations with great success in battle.
- Ants use it as bridges, transport of large objects and a general defensive strategy against a larger threat.

Ant Chaining Behavior

Why Chaining ?

- The robots can work cooperatively to clear the landing pad space avoid antagonism
- Exploit the advantage of parallelism
- Load evenly distributed.
- Reduced windrows per unit area.
- Challenge:
- How to coordinate the robots
- How physically place them next to each other.

Landing Pad Construction Strategy

Sensor Inputs

Chained Movement

Task Specification

- Robots given blueprint of site to excavate/clear. Also includes site for dumping regolith.
- Blueprint specifies depth, grade, and don't care areas.
- The task is time limited.
- Evolutionary training involves evaluation of 100+ scenarios.
- Robots cannot collide.
- Robots cannot get buried in regolith.

Evolution – No Chaining

Evolution - Chaining

Under the right conditions chaining reduces learning time towards near-optimal solutions.

Generation

Scalability – No Chaining

Reduced performance with too few robots due to insufficient labor. Too many robots and we have antagonism. Robots (Rescaled)

Scalability – Chaining

Antagonism can be significantly reduced and chaining is an advantage over a decentralized approach.

Lab Experiment Comparison

- Chaining approach effective at clearing windrows.
- Unlikely to get stuck in closed loop that limits area coverage.

High Fidelity Simulations

 Chaining approach shows increased quality (flatness, contiguous) and requires reduced time for clearing an area.

Finite State Machine Controller Derived from ANT

- Captures key behaviors
- FSM easy to understand
- Easy to port.
- Helps with prediction

Implementation on a Mission

Discussion

- Chaining/aggregation approach shows promising results for area clearing tasks.
 - Increased quality, reduced time due to increased efficiency.
 - Avoids antagonism
- Experiments have shown it clear windrows. It has the potential to reduce rutting. More experiments needed.
- Challenge is how to implement on real robots without substantial increase in complexity.
 - Deal with large obstacles that may require unchaining (?)

Future Work

- Physical comparison of several candidate chaining methods including using docking.
- Evaluation of robots performing chaining, dispersal and chaining.
- Construction of half or third scale rover team for the landing pad construction task.

Adventure Awaits

Thank You!

Questions ?

SpaceTREX LABORATORY

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory

ASTEROID CENTER

Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation (ASTEROID) Center