

First Steps Towards Lunar Settlements: Small Multirobot Chains For Landing Pad Construction

Jekan Thangavelautham*, Yinan Xu Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation Systems (ASTEROIDS) Laboratory University of Arizona

Outline

- **.** Motivation
- **Launch and Landing Pads**
- **Challenges**
- \bullet Objectives
- **Approach**
- **e** Results
- ^l **Summary**
- ^l **Future Work**

Motivation

Motivation

- ^l **Refueling base at various locations in cis Lunar space**
- **Water electrolyzed to produce** H_2 and O_2
- ^l **Fuel and raw material for transport, construction and manufacturing**

Motivation

- **How to practically extract resources at large scale**
	- ⁿ **Full automation**
	- ⁿ **Self-encapsulated**
	- ⁿ **Extensible**
	- **n** Minimal functionality
- **Can we seek out exemplars from the bio-world ?**
	- **No. 8 What can we mimic ?**
	- **No. 3** What do we discard ?

Importance of Launch and Landing Pads

- ^l **Quick means of transport of goods, services, astronauts to mining sites and outposts will be critical.**
- Launch and landing pads will be the main gateway **into the base and needs to be in excellent condition.**
- **Withstand high demand use**
- ^l **Handle heavy and uneven loading/unloading.**

Challenges

- Low gravity low traction \rightarrow low speeds
- Low cohesion sand/dust \rightarrow increased wear and tear

Keys to Lunar Base Robotics

- **Autonomous Control**
	- ⁿ **Unstructured environments**
	- ⁿ **Minimal supervision and task decomposition**
	- ⁿ **In-situ adaptation**
- ^l **Multiple robots**
	- ⁿ **Cooperation**
	- ⁿ **Specialization**
	- ⁿ **Redundancy**
	- **Ability to improvise**
- **Control development**

ⁿ **Adaptive, robust, little or no onsite support**

From Excavation to Construction

Papers being presented at Earth and Space, 2022

Objective

- **Develop an autonomous robotic system to construct Lunar Landing Pads (LLP).**
- **Thrusts: What are the interaction behaviors needed to attain a desired global behavior for a given number of robots ?**
	- ⁿ **Effective templates**
	- ⁿ **Effective stigmergy (communication mediated via environment)**
	- **n** Minimal human input
	- How to deal with *antagonism* ? negative interaction with too many **robots**

ⁿ **Scalable autonomy**

Approach

- ^l **Biologically inspired ideas suited for design of space robotic systems**
- **Model of natural selection:**
	- ⁿ **Evolutionary Algorithms [Rechenberg, 1971], [Holland, 1975]**

Approach

- ^l **Biologically inspired ideas suited for design of space robotic systems**
- **Model of natural selection:**
	- ⁿ **Evolutionary Algorithms [Rechenberg, 1971], [Holland, 1975]**

The Engineering Model: Social Insects

- **"Whole greater than the sum of the parts" -Koffka**
- Solve a complex task using many individuals.
- ^l **Individuals are simple, low-cost, disposable.**
- They have survived for 400+ million years through 2 **major extinction events.**

The Engineering Model: Social Insects

- **Stigmergy**
- **Templates**
- ^l **Self-organization**

Computation Intelligence for Constructing LLPs

- ^l **Effective task decomposition**
	- ⁿ **Task allocation – multiple robots**
- ^l **Find solutions where little task domain knowledge available**
	- ⁿ **Plastic**
	- ⁿ **Creative**
	- ⁿ **Extensible**
	- ⁿ **Robust, scalable, multiplatform**

Artificial Neural Tissues

[Thangavelautham & D'Eleuterio, 2005]

Neural Regulation

ANT Topology

Synaptic Connections

Neural Regulation within ANT

Landing Pad Construction Robot

Chaining

Why Chaining and Aggregation ?

- **c** Chaining is form of an **aggregation strategy**
- **Requires close coordination but provides x advantage**
- **Ancient Romans used Turtle Formations with great success in battle.**
- **Ants use it as bridges, transport of large objects and a general defensive strategy against a larger threat.**

Ant Chaining Behavior

Why Chaining ?

- **The robots can work cooperatively to clear the landing pad space – avoid antagonism**
- Exploit the advantage of parallelism
- ^l **Load evenly distributed.**
- Reduced windrows per unit area.
- ^l **Challenge:**
- ^l **How to coordinate the robots**
- ^l **How physically place them next to each other.**

Landing Pad Construction Strategy

Sensor Inputs

 P_{l}

Chained Movement

Task Specification

- Robots given blueprint of site to excavate/clear. **Also includes site for dumping regolith.**
- ^l **Blueprint specifies depth, grade, and don't care areas.**
- ^l **The task is time limited.**
- ^l **Evolutionary training involves evaluation of 100+ scenarios.**
- ^l **Robots cannot collide.**
- ^l **Robots cannot get buried in regolith.**

Evolution – No Chaining

Evolution - Chaining

Under the right conditions chaining reduces learning time towards near-optimal solutions.

UUINIUI

Scalability – No Chaining

Reduced performance with too few robots due to insufficient labor. Too many robots and we have antagonism. Robots (Rescaled)

Scalability – Chaining

Antagonism can be significantly reduced and chaining is an advantage over a decentralized approach.

Lab Experiment Comparison

- Chaining approach effective at clearing windrows.
- ^l **Unlikely to get stuck in closed loop that limits area coverage.**

High Fidelity Simulations

^l **Chaining approach shows increased quality (flatness, contiguous) and requires reduced time for clearing an area.**

Finite State Machine Controller Derived from ANT

- ^l **Captures key behaviors**
- **e** FSM easy to **understand**
- ^l **Easy to port.**
- ^l **Helps with prediction**

Implementation on a Mission

Discussion

- **c** Chaining/aggregation approach shows promising **results for area clearing tasks.**
	- ⁿ **Increased quality, reduced time due to increased efficiency.**
	- ⁿ **Avoids antagonism**
- **Experiments have shown it clear windrows. It has the potential to reduce rutting. More experiments needed.**
- **Challenge is how to implement on real robots without substantial increase in complexity.**
	- ⁿ **Deal with large obstacles that may require unchaining (?)**

Future Work

- ^l **Physical comparison of several candidate chaining methods including using docking.**
- Evaluation of robots performing chaining, dispersal **and chaining.**
- **Construction of half or third scale rover team for the landing pad construction task.**

Adventure Avail

Thank You!

Questions ?

SpaceTREX

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory

ASTEROID CENTER

Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation (ASTEROID) Center