

Resistojets for CubeSat Propulsion

Derek Gilbert, Nathan Grossman, Garrett Romero, Dr. Greg Ogden Department of Chemical & Environmental Engineering University of Arizona

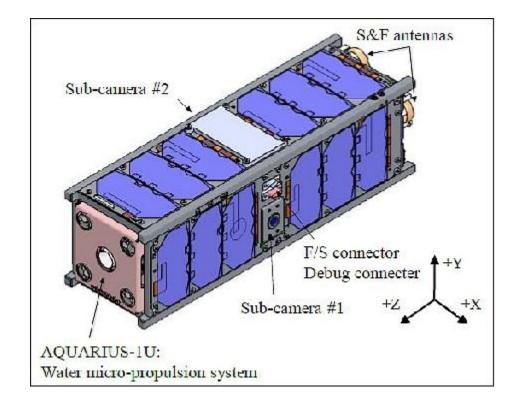
Presentation Outline

- Motivation
 - Where we fit in
- Objective
- Challenges
- Methods
- Current Status
- Discussion
- Takeaway

Big Picture

Develop Green Propulsion System for 1-3U CubeSat

- Early CubeSats did not have propulsion systems
- Increased CubeSat activity increased demand for extended mission lifetimes and navigation
- Resistojets are simple engines that only require a heat source and control valves
- Interplanetary CubeSats with Resistojets could use water from asteroid regolith to extend their mission operations

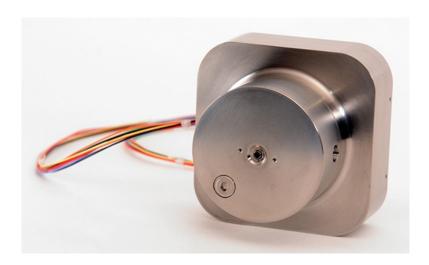

Objectives

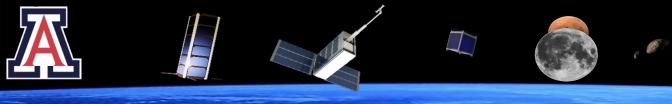
Create a Thruster that is:

- Clean
- Cheap
- Simple in design

Solution:

- Resistojets are common and simple in design
- Water is clean and cheap



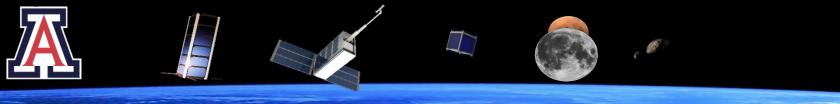

Current CubeSat Resistojets

CUA Resistojets simplify design by using refrigerants AQT-D Resistojet successfully operated from ISS deployment in 2019

ISSC 2022, beyond LEO, San Luis Obispo, May 2022

Challenges

- Steam is not an ideal gas (CEA code is not valid)
- Converging-diverging manufacturing difficulties (currently using a simple hole nozzle)
- Finding small parts was difficult
- Lead times of these parts extended the assembly timeline



CEA Code Analysis

- Major Finding: CEA relies on expelled gasses being an ideal gas
- Limiting Factor: Steam is not an ideal gas for temperatures below 748 Degrees Celsius (and pressures above 109 atm)

$$\frac{\mathrm{T}}{\mathrm{T}_c} < (\approx 2) \text{ and } (\approx 0.5) < \frac{\mathrm{P}}{\mathrm{P}_c} < (\approx 7)$$

1.97atm /217.7 atm = 0.009 (Does not Fail)

Analyzed research articles to obtain typical Resistojet values

A comparison of the UK-DMC Cubesat and the Optical Communications and Sensor Demonstration (OCSD) Cubesat

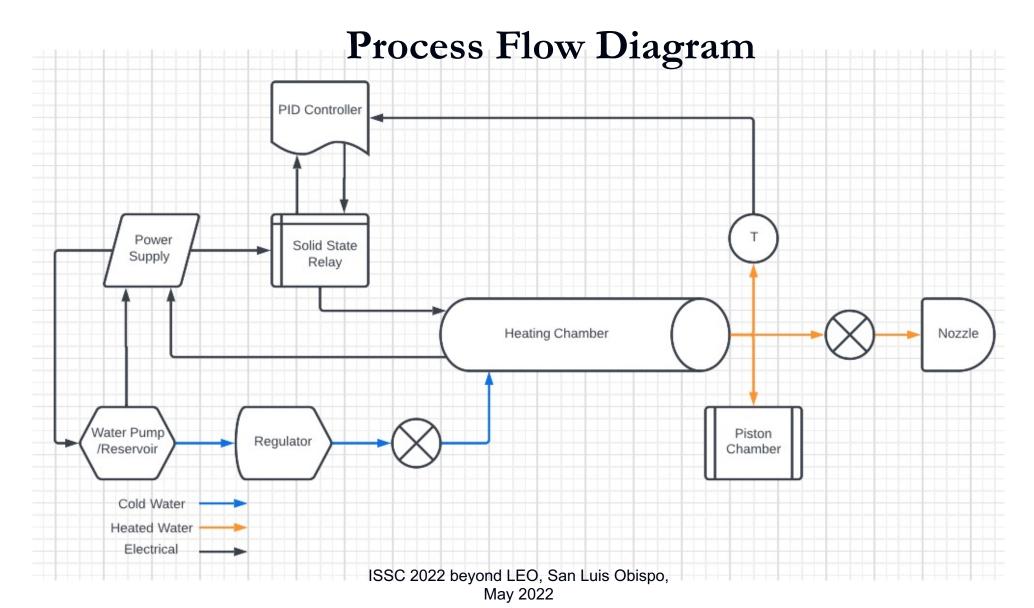
Gave us a starting point to determine our required Resistojet parameters

Parameters	OCSD Program	UK-DMC	
Thrust (mN)	3.3	3.3	
Specific impulse (s)	5	50	
Power consumption (W)	9.57	10	
Resistojet Volume (U)	Much less than 1U	N/A	
Water Volume (cm^3)	26	5	
Heating Temperature (C)	200	190	
Operating Temperature (C)	45	35	
Propellant Mass (g)	26	2.06	
Nozzle Diameter (mm)	0.7	0.2	
Opperating Pressure (atm)	1	N/A	
Expansion Ratio	N/A	1	

Initial Guess for a "Typical" Resistojet		Notes	
Thrust (mN)	3.3	Decided on increasing to 30 mN	
Specific impulse (s)	27.5	Dependent on Calculations	
Power consumption (W)	9.785		
Resistojet Volume (U)	1		
Water Volume (mL)	15.5		
Heating Temperature (C)	195		
Operating Temperature (C)	40		
Propellant Mass (g)	14.03	For water: Carried Mass ~ Volume	
Opperating Pressure (atm)	1	Determined that 2 bar is ideal	

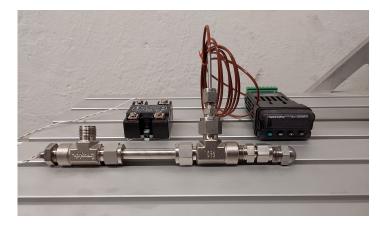

Experimental Sizing

Heater Section:


- Mass Flow Rate: 2.0 mL/min
- Temperature: 200 to 300 C
- Pressure: 2 to 4 bar

Feed Water Pump:

- Up to 6LPM
- Periodic Operation
 - Fill unit, self pressurizes upon heating, then expel in pulse



Purchased Design Components

- Heater Assembly
 - ¹/₄" 60V, 140W heater
 - 3/8" SS sheath
- PID heater & thermocouple
- Solid State Relay
- Feed Water Pump

Remaining Parts

- Power Supply (15 V)
- Expansion Relief Piston (Airpot 2KS95-3.0CP-ET)
- Solenoid Valve (Burkert 6013 136019)

Future Work

- Experimental verification of MATLAB data
- Converging-Diverging nozzle design and fabrication
- Vacuum Chamber testing
- Ice Plug buildup experimentation

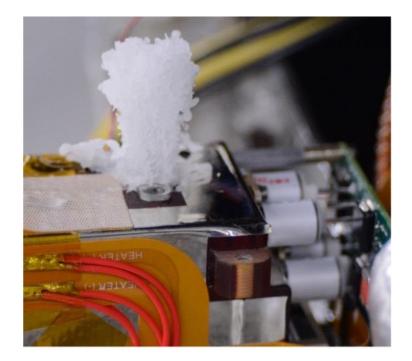


Figure 5: Ice plug buildup by the steam thruster firing in a vacuum.

Questions

ISSC 2022 beyond LEO, San Luis Obispo, May 2022