

Design for a CubeSat Propulsion System Using Polymer Electrolyte Membrane Electrolyzers

Maanyaa Kapur, Avery Stockdale Mentor: Dr. Greg Ogden Department of Chemical & Environmental Engineering, University of Arizona

ISSC 2022 beyond LEO, San Luis Obispo, May 2022

Presentation Outline

- Big Picture
- Objective
- Challenges
- Experiment Progress
 - PFD and CEA
- System Design
- Analysis
- Discussion

ISSC 2022, beyond LEO, San Luis Obispo, May 2022

- Determine volumetric flow rates necessary to produce the required thrust
- Develop Flame Safety System
- Test the system at different pressures to optimize flame stability
- Design a nozzle within mass budget constraints

Challenges

- Flame safety system setup (to prevent backward flow of hydrogen)
- Getting a stable flame at relatively low pressures
- Viewing the hydrogen and oxygen flames
- Integrating nitrogen in our system design
- Setting up and testing the system with limited resources and time constraints

Experiment Progress

- System design and PFD is complete
- Flame detection device wired into the flame safety system
- CEA code used to determine flow rates needed for 2N thrust
- Volumetric flow rates calculated
- Developed preliminary design nozzle that fits within the CubeSat mass and volume constraints

Combustion Experiment PFD

- PFD key features:
 - Solenoid valves
 - Flame arrestor
 - Nitrogen injection into combustion chamber

System Design Considerations

- Nozzle design
 - Designing ejecting nozzle for generating 2N nominal thrust
- Volumetric flow rates
 - CEA code
 - Important to determine gas nozzle sizes

Volumetric Flow Rates

• Used CEA code and

 $ISP = \frac{F}{\dot{m}g}$

- Based on 8:1 O/F
- Given mass flow rates, estimated volumetric flows based on gas densities at pressure
- These flow rates are important for sizing nozzle ejectors through which our gases flow into the combustion chamber and burn

Flow Rates Required at Each Pressure

Pressure (Pa)	Gas	Flow Rate (ml/min)
200000	H2	23220
	02	13200
300000	H2	15480
	02	8820
400000	H2	11640
	02	6600

Sample Nozzle Design

- Nozzle design
 - In addition to stabilizing pressure in and out of fuel cell, need further pressurization (done through the nozzle)
 - Smaller expansion ratio required to meet massvolume budget constraints and design specifications
 - More area for fuel tank

 $\epsilon = 22$

Two possible design considerations (both within the CubeSat and not protruding outside). <u>Fact:</u> Choosing the nozzle with an expansion ratio of 22 over the one with the 55 ratio will increase the fuel tank by 64%

Flame Safety System Design

Flame Detector Wiring

ISSC 2022 beyond LEO, San Luis Obispo, May 2022

- Testing to get a stable flame
 - First at the pressure that the gases flow out at
 - Then at different pressures (different nozzles) until a stable flame is obtained.

- Inert Setup (flushing nitrogen in the combustion chamber)
 - Ensures Hydrogen burns in presence of oxygen produced by fuel cell
 - Adjustments can be made to balance the oxygen flowing out and aiding in combustion.

Discussion

- CubeSat Propulsion System: Overview
 - CEA analysis performed
 - Hydroproofed PEM units
 - Tested electrolyzer gas production under different pressures
 - Flame Safety setup
 - Combustion experiment setup
- Next steps:
 - Test flame stability
 - Integrate within electrolyzer
 - Run entire system tests

g. 8 – Instantaneous Schlieren photographs of H2/air flames at different pressures and various equivalence ratios.

- Pareja, Jhon, et al. "Laminar Burning Velocities and Flame Stability Analysis of Hydrogen/Air Premixed Flames at Low Pressure." *International Journal of Hydrogen Energy*, vol. 36, no. 10, 2011, pp. 6317–24. *Crossref*, https://doi.org/10.1016/j.ijhydene.2011.02.042.
- Geere, Duncan. "Bottle Rockets: Water Could Propel Tiny Satellites of the Future into Deep Space." *The Verge*, The Verge, 2 Dec. 2013, https://www.theverge.com/2013/12/2/5166398/cubesat-kickstarter-water-for-satellite-propulsion.
- Liu, Yuen. "Performance Testing of Various Nozzle Design for Water Electrolysis Thruster" 2016, Air Force Institute of Technology PhD Dissertation
- Walter, Colum. "Development and Definition of a CubeSat Demonstrator for a Water Propulsion System" 2021, University of Stuttgart. Master Thesis.