

<u>System Design for a Polymer Electrolyte Membrane</u> <u>Hydro-Proof Test Apparatus</u>

Ryan McCabe, Ronnie Sabatino, Dr. Greg Ogden Department of Chemical & Environmental Engineering University of Arizona Dr. Dennis Just, Pima Community College

Presentation Outline

Big Picture	Findings
Background	Discussion
Objectives	Next Steps
Challenges	Questions
Experimental Methods	

Results

Big Picture

- Develop a Green Propulsion System for a 1-3U Cubesat
- Utilize a Polymer Electrolyte Membrane (PEM) to separate Water into Hydrogen (Fuel) and Oxygen (Oxidizer)
- Product from burning Hydrogen with Oxygen for thrust is Water
- Water is a stable, nontoxic, non-polluting substance that can be collected via In-Situ Resource Utilization (ISRU)

Background

- Determined that 3.5 atm is the optimal operating pressure for the propulsion system
- Evaluating Educational PEM Electrolyzers to stay in CubeSat paradigm of low cost access to space
- Ran hydrostatic tests to determine electrolyzer pressure limits

PEM Testing

PEM Pressure Tests

P-101	MV-101	G-101	F-101	WP-101	C-101	H-101	C-102	T-101-109	Y-101-104	C-103-106	E-101	C-107	H-102	PG-101
Water pipe	Water Manual	Flexible	Water	Water	¼" NPT to	6AN F to	6AN M to	1/8" Teflon	Y connect	1/8" to ¼"	H-Tec PEM	1/8" IDEX	4AN F to	Pressure
	Valve	Garden	filter	pump	6AN M	F Hose	1/8" IDEX		to 1/8"	Quick	Double	to 4AN M	F Hose	Gauge
		Hose			fitting	Assembly	Coupling		Teflon (2)	Connect	Electrolyzer	Coupling	Assembly	

Summary Table of Maximum Pressures									
Electrolyzer	Maximum Pressure (psi)	Pressure at Failure (psi)	Time of Failure (at pressure range)						
H-Tec Double (test 1)	74.3	73.75	5:51						
H-Tec Double (test 2)	72.2	71.7	4:43						
H-Tec Single	46	42.5	1:19						
Horizon Educational (w/RTV)	31.5	29.4	4:00						
Horizon Educational (no RTV)	24.5	24.5	8:25						
H-Tec Rebuildable (test 1)	72.5	-	no failure						
H-Tec Rebuildable (test 2)	<mark>69.75</mark>	-	no failure						
T-109 H-102 C-107 T-109 T-107 T-108									

Y-104 ISSC 2022, beyond LEO, San Luis Obispo, May 2022

Further Background

- Obtained gas storage tanks that are rated to 2000 psi
- Determined that it would be beneficial to hydrostatically test these storage tanks up to their rated pressure
 - In case of accidental over pressurization
 - In case future research pursues higher operating pressures
- Initially conducted experiments on low-cost, low-pressure containers (large soda bottles)

- Bulkhead fitting
 - Creating sufficient seals on bottle caps
 - Overcame this issue by
 - Soda bottle threads are universal across all brands
 - But some have Inner Protrusions
 - Made gaskets that worked with caps that had no inner protrusion
 - Developed one interchangeable cap seal for all tests
- Air in the system
 - **Designed a way to vent the air while filling the bottle with water**
 - Developed a system with the water inlet and air outlet at the bottom
 - Air outlet was a teflon tube that drew out of the top

Experimental Methods

- Tested containers at various pressures
- Held each pressure for 60 seconds
 - Tested for leaks frequently using dry paper towels and monitoring the pressure gauge
- Increased the pressure in approximately 10 psi increments until failure

Results

P-101 Water pipe	MV-1 Wate	01 G-101 F r Manual Flexible	F-101 WP-101 Water Pneumatic	H-101 6AN F to	T-assembly st	T-101 torage	T-101-102 B 1/8" Teflon B	SV-10 Sall va)1 H-102 alve 4AN F to F Hose	PG-101 Pressure	
Bottle Pressuriz											
									Time of	Failure	(sec)
Bottle number		Bottle Siz	Bottle Size (L)			Pressure at Failure (PSI)			(At Pressure)		
	1		1.25				18	35			2
	2		2.00)			13	35			78
	3		2.75				14	18			6
	4		2.00				13	35			27
			v	/P-101			BV-101(X)	T			1

Results

Bottle 3 Rupture

Bottle 2 Hydroforming

Findings

- Developed a system that can be used to safely and accurately pressure test a container
- Had persistent leaks and had to modify the fabricated cap seal several times
- Reached a Maximum pressure of 185 psi (with Bottle 1) out of all the experiments
- Bottle 1 failed at the cap, indicating that the walls of the bottle could have withstood higher pressures
- All containers had significant hydroforming prior to rupture

Discussion

- **Proof of concept in the system**
 - Can move onto testing the higher pressure storage tanks
- Modular System
 - Can add alternate components for unique configurations including using 3000 psi rated gauge
- Hydroforming should not be an issue with the stainless steel gas storage tanks rated to withstand up to 2000 psi

Next Steps

- Hydrostatic testing of the gas storage tanks
 - Utilizing most of the current experimental setup with some changes
 - No need for fabricated seals since pipe fittings can directly attach to the tanks
 - Different hydraulic line setup since the tanks have separate inlet and outlet ports
 - Designing a system to prevent implosion of lightweight balloon tanks during draining
 - Determined several potential solutions
 - Solenoid valve
 - Motorized ball valve
 - Vacuum breaker valve

Questions

