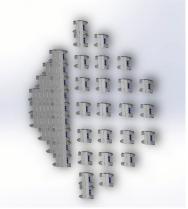


Visible Light Communication Between CubeSats During Close Proximity Operations

Athip Thirupathi Raj and Jekan Thangavelautham Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory Aerospace and Mechanical Engineering Department University of Arizona

Outline

- Introduction and Motivation
- Proposed Solution
- Inspiration
- Related Work
- Advantages of VLC
- Objectives
- Technical Methodology
 - Concept of Operations
 - System Design
 - Proposed Testing Methodology
- Conclusions and Future Work



Introduction and Motivation

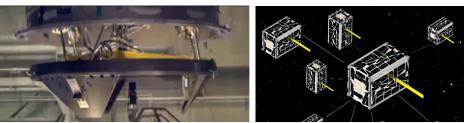
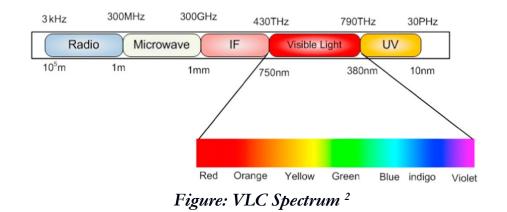
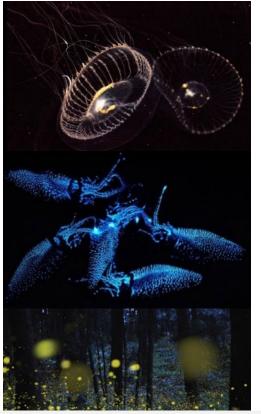

- **Co-ordination, Co-Operation, Formation Flying:**
- Required for Space Commerce
- In-Space Assembly
- Rendezvous, Proximity Operations, and Docking

Figure: Shipping Containers on a ship

In-Space Assembly


Mother-Daughter satlet Requirement for a CubeSat Form Factor Inter-Satellite Communications System

Proposed Solution


Visible Light Communication (VLC)

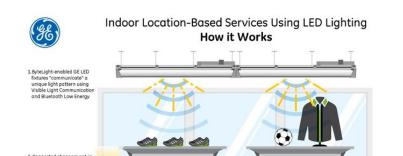
 Encoding messages (bits) in Visible Light bandwidth (wavelength spectrum of 380 nm to 750 nm corresponding to a frequency spectrum of 430 THz to 790 THz)

Nature

- Use of Bioluminescence to communicate
- More prevalent in deepsea areas

Man Made

• Aircraft Strobe Lights


Inspiration from Bioluminescence found in Deep-Sea to apply in Deep Space.

Airplane Strobe Lights ³ (Bottom)

Related Work

- Used in Aircraft and Maritime activities as a standard
- Demonstrated commercially for localization

SpaceX Dragon – ISS Docking using strobe lights (Credit: NASA/SpaceX)

Lighting Cues as a standard for Aircraft and Maritime applications

Advantages of VLC

<u>Traditional Advantages</u> (Terrestrial)

- Higher Speed Up to 10 Gbps ✓
- No EMI 🗸
- Lower Cost ✓
- Spectrum: RF is getting saturated; VLC is 10000 times larger in Bandwidth ✓
- Dynamic Load Balancing

<u>Traditional Disadvantages</u> (Terrestrial)

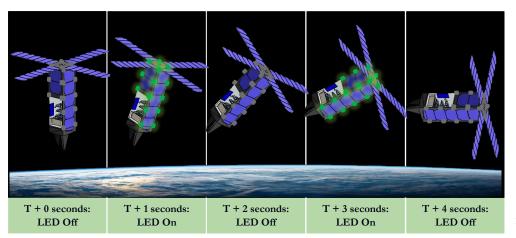
- Requirement for Line of Sight
 - Not an issue in space
- Lower Range
 - Not an issue for proximity operations
- Interference by external noise

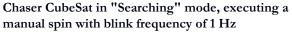
We get the best of both worlds using VLC in space

Objectives

- Develop a system to identify a target 3U CubeSat in Deep Space
- Must fit in a 3U CubeSat Form factor (mass, volume, power)
- Develop a VLC system with the following key specifications:
 - Target Identification Range = 50 m (TBR)
 - Bit Rate = 100 Mbps (TBR)

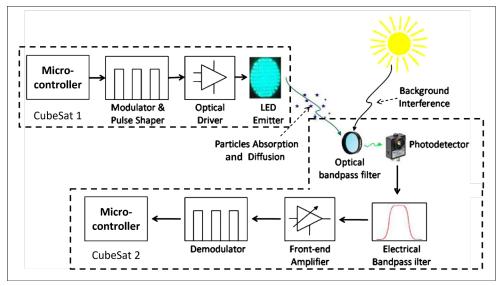
Concept of Operations


Deployment


Phase 1: Initial Rendezvous

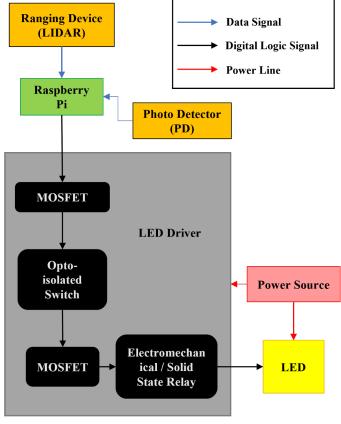
"Active Lighting Cues"

- Use of Blinking LED lights on all surfaces of each S/c
- Identification using Light-to-digital converters (Photodetectors)
- If S/c does not exit "Searching" mode after a set time, it executes a manual spin using thrusters/magnetorquers



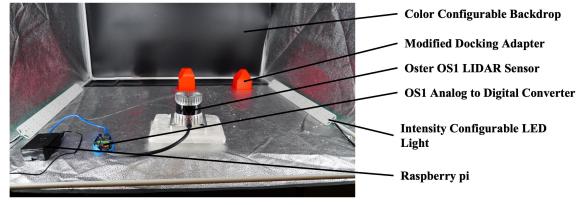
Blink Frequency	Message
1 Hz	"Searching" Mode
2 Hz	"Target Identified" Mode
3Hz	"Contact Established" Mode
4Hz	Distance = 50 to 10 meters (TBR)
5 Hz	Distance = 10 to < 1 meters; Close contact
Off	End of Initial Rendezvous Phase; Switching to Soft Capture Phase

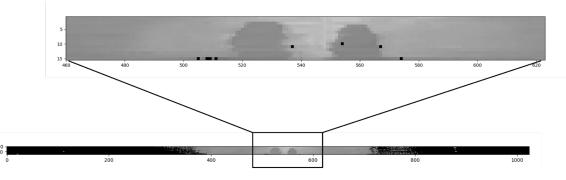
System Design


LED Lighting Cues System Architecture, modified from⁶

<u>TSL 2591 Light</u> <u>Detector</u>

amsOSRAM High Power LED used in testing


Block Diagram of High-Power LED Driver Circuit with Photo Detector and Lidar Input


Testing Methodology

Light Adjustable Lighting Studio

Ranging Proof of Concept Example Test Setup

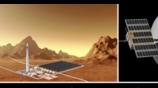
Scan of 1U Docking Adapters by the OS1 Sensor

Conclusions and Future Work

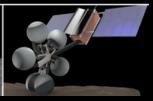
- Fabrication of LED-Photo Detector circuit to validate Lighting Cues as a proof of concept complete.
- Identification of 1U Docking Adapter using available LIDAR hardware complete.
- Experimental verification of design over various distances and lighting conditions underway

SpaceTREX LABORATORY

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory


ASTEROID CENTER

Asteroid Science, Technology and Exploration Research Organized by Inclusive eDucation (ASTEROID) Center



Adventure Awaits

References

¹ Swarm/SODA. (2017, August 6). NASA. Retrieved April 29, 2022, from <u>https://www.nasa.gov/feature/swarmsoda/</u>

² Khan, L. U. (2017). Visible light communication: Applications, architecture, standardization and research challenges. Digital Communications and Networks, 3(2), 78–88. <u>https://doi.org/10.1016/j.dcan.2016.07.004</u>

³ Low, I. (2022, March 30). The lights on modern airliners - Isaac Low. Medium. Retrieved April 29, 2022, from <u>https://isaaclow.medium.com/the-lights-on-modern-airliners-6d2b7ea932e1</u>

⁴ Nikam, A. (2022, February 18). Aircraft Exterior Lighting Market is expected to exhibit a CAGR of 3.8% by the end of 2027. TechBullion. Retrieved April 29, 2022, from <u>https://techbullion.com/aircraft-exterior-lighting-market-is-expected-to-exhibit-a-cagr-of-3-8-by-the-end-of-2027/</u>

⁵ LaMonica, M. (2014, June 2). GE Brings ByteLight-enabled Smart LED Lights to Stores. IEEE Spectrum. Retrieved April 29, 2022, from <u>https://spectrum.ieee.org/ge-brings-</u> <u>bytelightenabled-smart-lighting-to-stores</u>

⁶ Cui, K., Chen, G., Xu, Z., & Roberts, R. D. (2012). Traffic light to vehicle visible light communication channel characterization. Applied Optics, 51(27), 6594. <u>https://doi.org/10.1364/ao.51.006594</u>