Startracking for Small Satellites: Efficient Star Identification Using a Neural Network

David Rijlaarsdam^{1,3}, Hamza Yous¹, Jonathan Byrne¹, Davide Oddenino², Gianluca Furano², David Moloney¹

¹ Intel Movidius, ² European Space Agency, ³ Delft University of Technology

Contact: d.d.w.rijlaarsdam@student.tudelft.nl

Content

- 1. Introduction
- 2. Study motivation & Objective
- 3. Methodology
- 4. Application Environment
- 5. Design
- 6. Results
- 7. Conclusion

• High accuracy, drift-less attitude determination can not be provided on interplanetary missions by most attitude sensors

Jena-Optronik - https://directory.eoportal.org/web/eoportal/satellite-missions/s/smallgeo, accessed 8/4/2020

Comparison of accuracy of attitude determination sensors

	Reference frame	Attitude measurement accuracy			
Earth sensor	Horizon	6'			
Sun sensor	Sun	1'			
Magnetometer	Geomagnetism	30'			
Star sensor	Star	1″			

Reprinted from: Zhang, G. J. (2011). Star identification. National Defense Industry Press, Beijing.

Recent advancements in Lost-in-Space star identification algorithms

Author	Year	Feat. Ex.	S/N Environmen	Type t	Search	Validation
Juang et al.	2003	Pattern	High	Singular Value	O(n)	N/A
Silani and Lovera	2006	Hybrid	Medium	Polestar	O(bn)	$O(bk^2)$
Na et al.	2008	Pattern	High	Grid	O(bn)	N/A
Zhang et al.	2008	Pattern	High	Polestar	O(fn)	O(k)
Wei et al.	2009	Pattern	Medium	Log Polar Transform	O(n)	N/A
Quan and Fang	2010	Pattern	Very high	Adaptive Ant Colony	O(log(n))	N/A
Yoon et al.	2011	Pattern	High	Image Based	O(n)	N/A
Delabie et al.	2013	Pattern	High	Image Based	O(n)	N/A
Li et al.	2014	Subgraph	Low	Polestar	$O(b(\Delta mn)^2)$	$O(k^2)$
Aghaei and Moghaddam	2016	Pattern	Medium	Grid	$O(\alpha n)$	N/A
Schiattarella et al.	2017	Subgraph	Very low	Polestar	O(k)	O(bk)
Wei et al.	2019	Hybrid	Very low	Polestar	O(n)	O(nk)
Xu et al.	2019	Pattern	High	Deep Learning	O(1)	N/A
Wei et al.	2019	Pattern	High	Singular Value	O(log(n))	$O(k^2)$

Objective

To design a robust deep learning star identification algorithm

Methodology

- Analyse current state-of-the-art of star identification algorithms
- Design a compatible feature extraction method
- Design a minimalistic neural network architecture
- Implement and validate model

Methodology

Application Environment

Application Environment

- Extremely sparse input
- Rotationally variant
- Noisy environment

Design - Novel Feature Extraction Method

Design - Network Architecture

Output Layer inter Movidius

Design

- Rotational invariant, robust feature extraction by histogram of distances to pole star
- Simple, flexible and lightweight neural network design

Results - Experimental Setup

- Star catalog and sensor model provide artificial scenes with guide star in the center
- Different levels of noise have been added in order to show underlying robustness

Results

Results - Identification rate in 100 application environments

	0% -	0.995	0.994	0.994	0.993	0.99	0.987	0.983	0.981	0.976	0.97
	10% -	0.994	0.992	0.991	0.988	0.983	0.978	0.974	0.968	0.961	0.952
ne [-]	20% -	0.99	0.986	0.98	0.97	0.965	0.959	0.949	0.934	0.928	0.918
in Sce	30% -	0.966	0.959	0.949	0.94	0.928	0.915	0.902	0.882	0.87	0.857
Stars	40% -	0.911	0.899	0.882	0.867	0.845	0.837	0.813	0.798	0.774	0.762
False	50% -	0.799	0.786	0.77	0.752	0.731	0.709	0.695	0.679	0.668	0.654
ntage	60% -	0.685	0.675	0.662	0.635	0.629	0.602	0.581	0.569	0.557	0.538
Percei	70% -	0.558	0.55	0.54	0.519	0.504	0.501	0.49	0.46	0.455	0.437
	80% -	0.436	0.435	0.416	0.41	0.408	0.387	0.371	0.36	0.353	0.34
	90% -	0.343	0.339	0.332	0.315	0.304	0.294	0.292	0.282	0.276	0.267
	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 Standard Deviation Positional Noise [pixels]										1.8

Future work

- Include verification step in end-to-end attitude determination algorithm
- Expand training data and extend network size analysis
- Optimise binning features for end-to-end attitude determination

Conclusion

- The presented algorithm provides high accuracy, lightweight attitude determination in interplanetary conditions
- Underlying robustness against noise is high
- Future optimisations can improve end-to-end performance

