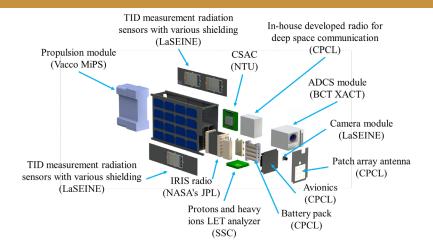
LUNARAD – A Study of Radiation Shielding Technologies in Cis-lunar Space

ISSC – May 11-12, 2020 – Pauline Faure and Dave Pignatelli

OUTLINE


- LunaRad at a Glance
- Motivations
- Project Description
- Moving Forward
- Summary

LUNARAD at a GLANCE

- Project lead Cal Poly CubeSat Laboratory (CPCL)
- Partners Kyushu Institute of Technology (Kyutech), Japan, and Nanyang Technological University (NTU), Singapore
- Primary mission Test radiation shielding technologies in cis-lunar space
- Secondary missions Test a chip scale atomic clock (CSAC), test in-house developed radio for deep space communication, and take photographs of the Moon

Spacecraft	6U CubeSat
Mass	10kg
Power	12W average; 35W peak
Orbit	Periapsis: 174,500km Apoapsis: 375,000km
Mission lifetime	56 Earth days

MOTIVATIONS

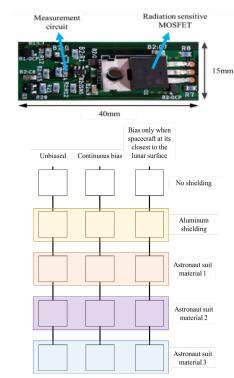
• Cal Poly CubeSat Laboratory's mission statement is to

"advance the space industry by providing inclusive, high-quality workforce development and community engagement programs that enable the next generation of space discoveries"

- NASA's Strategic Goals and Strategic Knowledge Gaps (SKGs)
 - SKG III-G "Test radiation shielding technologies" LunaRad's primary mission (TID, LET) will help support long-term lunar exploration programs
 - SKG III-B-3 "Autonomous surface navigation" LunaRad's CSAC demonstration will be the first step toward a constellation of CubeSats for a global navigation system in lunar orbit
 - Strategic Goal 3.3 "Inspire and engage the public in aeronautics, space, and science" – LunaRad's Moon photographs will contribute to developing general public curiosity in space sciences and engineering

MOTIVATIONS

- Engineering advances In-house deep space communications system
- Global science, technology, engineering, and mathematics project-based learning opportunities
 - 100+ multidisciplinary undergraduate and graduate students involved
 - International cooperation and outreach capabilities
 - Stimulate the number of players to engage in space activities

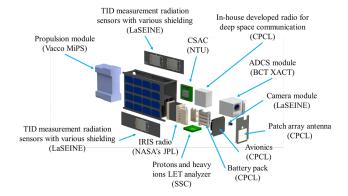


PROJECT DESCRIPTION – Primary Mission

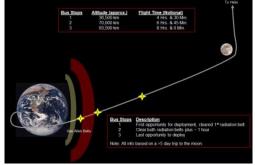
- Primary mission lead: Kyutech
- Total ionization dose measurements using MOSFETs TRL 6
 - To be flown on board BIRDS-4 in summer 2020
 - Unbiased MOSFETs to minimize error from environmental factors and continuously biased MOSFETs (5V) to emphasize change in gate voltage and increase range of measurements at lunar periapsis
- Evaluation of aluminum and astronaut suit materials (polybenzimidazole-based material, urethane coated nylon, or neoprene coated nylon)
- Linear energy transfer analyzer for protons and heavy ions TRL 6
 - Flown on board TechDemoSat-1 in 2014
 - LET range: 0.9 to 7MeV.cm²/mg for heavy ions and 0.1 to 5MeV.cm²/mg for protons

PROJECT DESCRIPTION – Secondary Missions

- Secondary missions leads: Kyutech and NTU
- Chip-scale atomic clock TRL 7
 - Flown on board SPATIUM in 2018
 - Volume: less than 20cm³; Mass: less than 50g; and Power consumption: about 100mW
 - 10MHz output signal and 3.0*10⁻¹⁰ Allan deviation
- Camera, OmniVision's OV5642 TRL 9
 - Flown on board several Kyutech's missions
 - Image sensor: 5MP; Mass: less than 20g; and Power consumption: less than 1W



- Bus design lead: Cal Poly CubeSat Laboratory
- Further the development of low-resource, easily manufacturable, but scientifically capable deep space spacecraft
 - Selection of COTS components
 - Use of in-house developed sub-systems
 - Decrease risk by selecting commercially available capabilities that are missing at CPCL
 - Validate CPCL capabilities for deep space missions
 - Involve undergraduate and graduate students


System	Volume [U]	Mass [kg]	Peak Power [W]	TRL [-]
CPCL standard bus – Structure, C&DH, EPS	0.5	2.0	7	4 to 9
ADCS – Blue Canyon XACT	0.5	1.2	3	9
COM – IRIS radio	0.5	1.2	35	9
COM – CPCL's deep space radio	0.5	0.8	15	1
Propulsion – Vacco MiPS	3	3.5	15	7
Payload – TID radiation sensors, LET analyzer, CSAC, camera	1	1.0	5	6 to 9

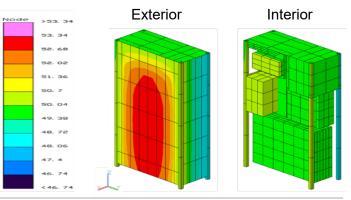
Orbital dynamics and propulsion

- Assumed LunaRad deployed at Bus Stop 3 from the Interim Cryogenic Upper Stage (ICPS)
- From Bus Stop 3, perform a total of two maneuvers to put LunaRad on elliptical orbit around the Moon
 - Maneuver 1 at separation + 2 hours
 - Maneuver 2 at separation + 5 days
 - Total $\Delta V = 40$ m/s
- End of life
 - Spacecraft lifetime: 60 days
 - De-orbit and burn through Earth's atmosphere

NASA – SLS Artemis 2 Secondary Payloads 6U & 12U Potential Cubesat Accommodation, August 2019

Baselined Propulsion System

Model	Vacco MiPS
Total impulse [Ns]	755
Available ΔV [m/s]	~93 for 10kg CubeSat
Operations	Orbital maneuvers (40m/s) Orbit maintenance, conjunction avoidance, contingency operations (~53m/s)



Electrical power system and thermal

- Total estimated average power consumption: 12W
 - 32 body-mounted solar cells: 28% efficiency at 25°C
 - 4 Li-ion batteries: 230Wh/kg energy density
- Passive thermal control
 - Worst hot or cold cases: ~50°C for external and internal components
 - Critical operating temperature range: IRIS radio (-20 to +50°C) and Li-ion batteries (0 to +45°C)

Operational Modes	Science	Standby	Desaturation [†]	X-band Downlink ^{††}
Duty Cycle (% per orbit)	20.00	77.50	1.00	1.50
Subsystems	Power Consumption [W]			
Propulsion	0.50	0.50	15.00	0.50
Communication	12.60	0.50	12.60	35.00
Thermal	3.00	3.00	3.00	5.00
Power	2.10	0.50	3.20	4.20
C&DH	0.30	0.30	0.30	0.30
ADCS	3.00	1.00	1.00	3.00
Payload	2.00	0.00	0.00	0.00
Average Power Consumption [W]	4.70	4.50	0.35	0.72
Average Power Consumption + 20% Margin [W]	5.64	5.39	0.42	0.89
Total Average Power Consumption + 20% Margin [W]	12.36			
[†] Assume a 15min desaturation time ^{††} Based on pavload data size, assumed 30min downlink time				

Worst hot case analysis results

Communication and attitude determination and control

- Communications system assumptions
 - Primary: IRIS radio with Deep Space Network as ground support, TRL 9
 - Secondary: CPCL's X-band radio with CPCL's X-band ground station as support, TRL 1
- With IRIS and DSN: link margin of 6.5dB at 384,000km
- ADCS requirement driven by communications and propulsion
- ADCS baselined to commercially available BCT's XACT module, TRL 9

Assumption/Input	Entry
Central frequency [GHz]	8.40
Spacecraft transmission power [W]	3.80
Spacecraft antenna gain [dB]	16.00
Spacecraft max. distance from Earth [km]	384,000.00
Ground station EIRP [dBm]	139.60
Ground station dish diameter [m]	34.00
Ground station power output [kW]	20.00
Ground station min. elevation angle [rad]	0.02
Max. slant range [km]	384,000.00

Parameter	Entry
Spacecraft transmit power [dBW]	5.80
Pointing losses [dB]	0.00
Line losses [dB]	3.00
Rain losses [dB]	3.00
Atmospheric losses [dB]	0.00
Eb/N0 [dB]	11.00
Receive antenna gain [dB]	78.00
Electron losses [dB]	0.15
Transmit antenna gain [dB]	16.00
Polarization losses [dB]	1.00
Free space path loss [dB]	222.62
System noise temperature [K]	250.00
Fixed data rate [bps]	512,000.00
Data rate term [dB-Hz]	-147.53
Total gains [dB]	99.80
Total losses [dB]	82.25
Link margin	6.55

MOVING FORWARD

- Advance CPCL's capabilities for deep space missions
 - Communications (space and ground segments)
 - Electrical power system
 - Attitude determination and control
 - Propulsion
- Funding and launch opportunities
- Planned demonstration of some of the capabilities from 2021

SUMMARY

- LunaRad 6U CubeSat for the study of radiation shielding technologies to support long-term lunar exploration programs
- Further the development of low-resource, easily manufacturable, but scientifically capable deep space spacecraft
 - Address NASA's Strategic Plan and Strategic Knowledge Gaps
 - Involve multidisciplinary undergraduate and graduate students
- Advance Cal Poly CubeSat Laboratory's bus capabilities to tackle deep space missions



Contact Information

Pauline Faure

- Aerospace Engineering Department Cal Poly CubeSat Laboratory
- & 805-756-6043
- \boxdot pfaure@calpoly.edu
- Subesat.org; Polysat.org

