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Less than 1% of Mars has been explored. Aerial vehicles provide a method to explore rugged terrain,
cliff/canyon walls, RSL, and skylichts
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MARS EARTH

Atmaospheric Pressure 636 Pa 101325 Pa
Surface Level Temperature 210K 288.15K

Air Composition 95% CO2 78% Nitrogen
Distance from Sun 1.524 1 AU

Gravity 3.711 m/s? 9.81 m/s?

The atmospheric pressure on Mars is less than 1% of Earth’s, resulting in difficult flying conditions
tor LTA vehicles. However, flight is feasible.




Types of Balloons

® Super Pressure Balloon
® /cro Pressure Balloon
® Vacuum Airship

® Solar Montgolfiere
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Helium and Hydrogen
balloons can lift a 10kg
payload at approximately
12m diameter. Solar balloons
can lift the same payload at
~17m diameter



Concept of Operations
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With a light enough payload, and pre-heating of the envelope, the MEB can achieve buoyancy during EDL.
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MEB CubeSat System Design
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MEB collecting science data on an exposed Martian
cliff wall: high res-imagery, stratigraphy, core
sampling, LIDAR

Anchored MEB, collecting extended atmospheric data
and imagery, 1 km above the surface
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EnVelOpe RadiatiOn MOdel Aprﬂj =0.25 %7 % dz

1 —cos(Hal fConeangie)

ViewFactor =
: R
. . Mars
Hal fConegpgle = arcsin(————)
Sonloey : - Ryars + 2
Absorbed direct sunlight is denot
Radiation
lost from _
envelope Qsun = a* Aproj * dsun
Direct .
oo /Internal Absorbed Albedo Heat is denoted by:
Covertin Qaibedo = A * Asurf * Qaibedo * ViewFactor

Absorbed Martian Surface IR Heat is denoted by:

QIR,Surface = QR * Asurf * qIR,Surface * ViewFactor

Reflected
Surface
Radiation

sl Emitted IR Energy from the Envelope is denoted by:
Radiation

— 4
QIremit = O * € * Asurf * Lenvelope

The overall heat radiation on the balloon is then denoted by:

Qrad = qun + QAlbedo + QIR,Surface - QIR,emit
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Energy Balance Equations

Venting for Qvent = m* ¢y x (T; — Tym)
Altitude Control

Envelope dT; . Qrad T Qconv,ext = Qconv,mnt
Temperature ¢

*
Cv,env mETI'UEE[}pE

Internal dTi . Qconu.mt o Qvent

Temperature dt Cycoz * Mcp2

These equations provide the dynamic temperature response as a function of time.
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Trajecto for Baseline Balloon Model
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A smaller envelope-to-payload ratio results in longer flight times as well as higher maximum achievable altitude.
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A smaller vent results
in smaller limit cycle,
but more vent openings.

| As vent size increases,

“deadzone” for altitude
control increases as
well.
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Discussion

Extended sunlight from exploring
poles in summer/winter results in
longer tlights without anchoring
Mars is a breathing planet, seasonal
climate change and winds

Can compliment other surface
vehicles

Biggest Challenge: Multi-day flights &

Ls=270

~_Surface Temperature (K) and Winds
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Conclusions

Flying solar balloons on Mars 1s challenging but this model
shows feasibility of the platform.

Highly customizable and can be designed for specific missions.
Future work:

m 3D control model

m Terrestrial experiments

B Swarm and Multi-Agent Systems
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