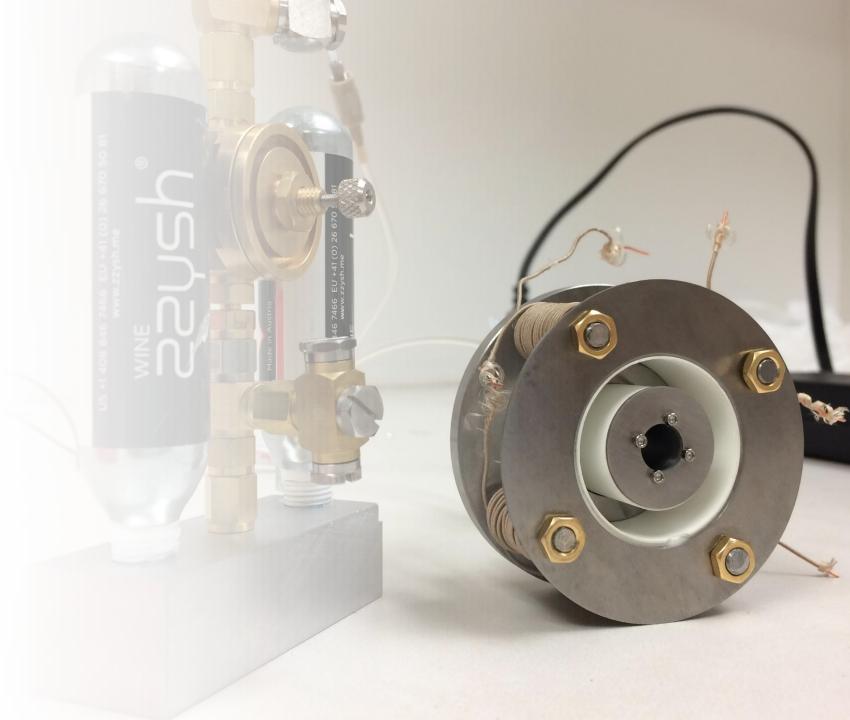

An Accessible CubeSat Hall Effect Thruster for Interplanetary Missions

Colin Warn

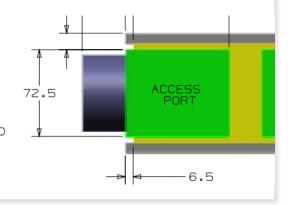
Washington State University
Interplanetary Small Satellite Conference
Online Web Conference

Hall Effect Thrusters


field

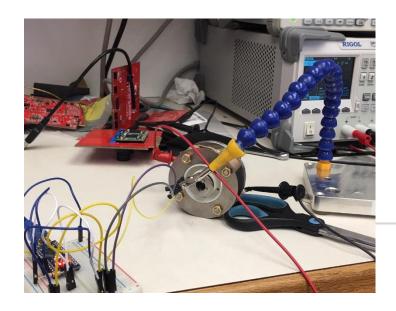
- Sea of circulating electrons ionizes inert gas.
- Historically used for orbital insertion, station-keeping and de-orbiting.
- Has seen use in interplanetary missions. European Space Agency's "Smart-1."
- Problem: Flight-ready versions are historically very expensive to procure.

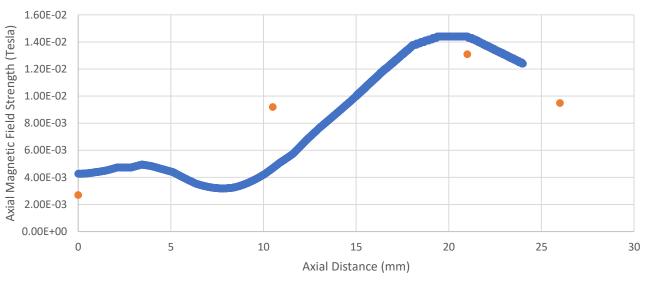
"View of a Hall Effect Thruster," M Dudeck, Plasma propulsion for geostationary satellites for telecommunication and interplanetary missions

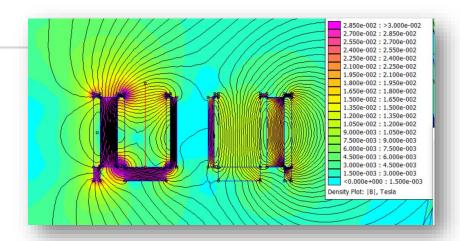

Accessible CubeSat Hall Effect Thruster CougDrive-I

- Based on previous work done by Cal Poly and Western Michigan University.
- \$10,000 to build goal.
- Release design and build guide.
- Aiming for flight-ready.

CougDrive-I Design Parameters

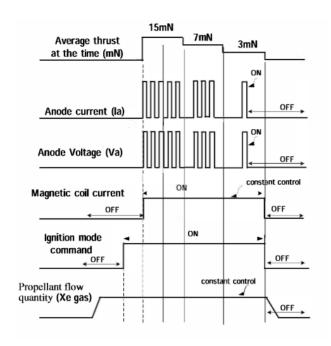

- 80mm wide, 138mm long, 85mm tall
- Optimized for 3U+ configuration




Nominal Power	100-200 W	
Target Thrust	6-8 mN	
Target Specific Impulse	1000-1400s	
Target Discharge Voltage	200-300 V	
Mass Flow Rate	0.6-0.7 mg/s	
Propellant	Xenon, Argon	
Dry Mass	350 g	
Cathode	HeatWave Hollow Cathode	

Magnetic Field Testing

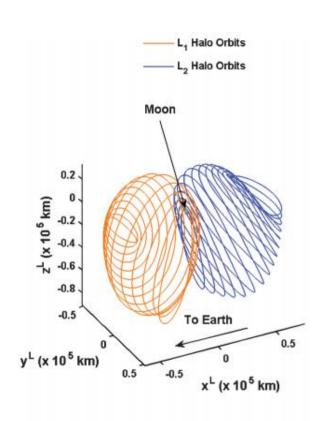
Axial Channel Magnetic Field Profile



Experimental Measurements FEMM Theoretical Values

Power Processing Unit

- Work is underway, but help needed.
- Preliminary work based on Mitsubishi Electric Corporation work.¹



Current System Requirements

Unit	Voltage (V)	Current (A)	Power (W)	Tolerance
Anode	200-300	0.5	100-200	C.V ± 5%
4x Inductor	1	2	2	C.C ± 3%
Cores				
1x Central	1	2	2	C.C ± 3%
Core				
Keeper	48-50	1.5	72-75	C.C ± 5%
				C.V ± 5%
Heater	1.5-1.6	14-16	21-25.6	C.C ± 3%
1x Solenoid	1.6-12	.025-0.160	0.250	C.V + 5%
		Total	197-300	

1- Hiroyuki Osuga and Fujio Kurokawa, "Power Processing Unit for the Next Generation Satellite"

Potential 3U Lunar Relay Communication Application

Starting in Earth Parking Orbit (20,000 km).

Maneuver to halo orbit for Lunar south pole communications relay.²

Orbit	m_f/m_0	Coast time, days	Total time, days	ΔV , km/s
12-day L_1 halo 1	0.944	14.72	182.8	3.020
12-day L_1 halo 1^a	0.940	17.95	191.2	3.111
12-day L_1 halo 1^b	0.881	13.44	84.02	3.261
12-day L_1 halo 2	0.927	24.29	155.5	3.151
14-day L_1 vertical	0.935	31.21	169.2	3.121
16-day L_2 vertical ^a	0.935	43.92	176.5	3.158
14-day L_2 butterfly	0.937	50.24	189.7	3.178

aLunar flyby

^bRealistic I_{sn}

3U Communication Hardware Cost Assessment

- Assumes Isp ranges from 1000-1400s
- Target dV ≈ 3.3 km/s
- Estimated hardware cost: \$109-400k

Component:	Mass (g):	Cost (\$):
3U Structure	1100	3,000
CougDrive-I	300	10k-50k
Xenon	900-1200	2,000
Batteries	300-400	50
Power Processing Unit	100	1,000
Gemini Space Panel Double Deployable Solar Panels for 3U	420	(30,000?)
NanoAvionics Reaction Wheels	155	(30,000?)
Endurosat X-Band Communications	350	30,000
EnduroSat Computer	75	3,000
Payload	0-300	N/A
Rocket Launch Cost	-	60k-240k
Total	4 kg	\$109k-400k

To-Do

- Lab test for first plasma.
- Develop flight-ready power processing unit.
- Flight-ready configuration lab tests.
- Demonstration mission.
- Look for grants and collaboration opportunities.

Thank You

Colin Warn
Washington State University
colin.warn@wsu.edu

Special thanks to Dr. Dan Lev for being an advisor for this project.