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Phase Four Overview
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Radio-Frequency Thruster Overview
How do RFTs work?
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Core Technology
Innovations:
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Enabling Technology
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Enables low cost, high
delta-V missions




SManwell Overview
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SManwell Overview

Telemetry (hidden)
e 9pinsocket
° RS-422
Power (hidden)
e 4 pinheader
° 22-36V

500 W max
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e 8x%-20screws
in front panel

Thermal
e Defined heat conduction
. load through front panel
%lnterche s based on operating

9 pin condition
socket




(ample
for small satellites?

Why Maxwell?
The only engine that..

e Provides several mN of thrust

e Provides several kN-s of total
impulse

e Fits

Capella Space 120 UR



Lessons learned - Technology enablers
No hollow cathode simplifies operations and reduces size
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Adapted from [1]

[1] Pinero et al, “High Input Voltage Discharge Supply for High
Power Hall Thrusters Using Silicon Carbide Devices,”
IEPC-2013-388 (2013)



Lessons learned - Technology enablers

No hollow cathode simplifies operations and reduces size

To ignite an electrodeless RF thruster:

1. lgnition:
a. Setgas flowinto liner
b.  Apply power to RF antenna, can ramp to
operational power as fast as 100 ms

-

o L N
To ignite a Hall thruster [1]:
1. Conditioning:
a.  Gradually ramp up cathode heater
current, typ. 35 minutes
b. Typ.cathode temperature 900-1100 deg C
c. This process can be shortened modestly
for subsequent ignitions
2. Ignition:
a. Setcathode & anode gas flow
b. Setcathode & anode bias voltages
c. Operate high voltage igniter circuit to
initiate discharge
J

[1] Rubin & Williams, Journal of Applied Physics, Vol 104, No. 053302 (2008).



Lessons learned - Technology enablers
RF electronics are small & efficient - driven by the wireless power industry [1]

Phase Four PPU High Level Architecture HET PPU High Level Architecture [2]
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[1] Yates et al, “A100-W 94% Efficient 6-MHz SiC Class E Inverter with a Sub 2-W GaN
Resonant Gate Drive for IPT”, Wireless Power Transfer Conference, IEEE (2016)

[2] Pinero et al,, “High Input Voltage Discharge Supply for High Power Hall Thrusters
Using Silicon Carbide Devices,” [EPC-2013-388 (2013)



Lessons learned - Technology enablers
RF electronics are small & efficient - driven by the wireless power industry [1]

Phase Four PPU Installation into Maxwell
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Installation of 500 W PPU into Maxwell chassis
Proprietary details blurred out of focus

PPU Mass: 0.65 kg

HET Subsystems |2|

PPU

Propellant storage and
management

Thruster and cathode

Example 300 W HET
PPU Mass: 10 kg

[1] Yates et al, “A100-W 94% Efficient 6-MHz SiC Class E Inverter with a Sub 2-W GaN
Resonant Gate Drive for IPT”, Wireless Power Transfer Conference, IEEE (2016).

[2] Lee et al., “Development of Low Power Hall Effect Propulsion System with
Improved System Efficiency for Small Satellite Applications,” SP2018-00181 (2018)



Lessons learned - Technology challenges
Thermal engineering requires strict definitions and close interfaces

Background:

e Traditional plasma propulsion designed for long
duration operations
e Thermalload on spacecraft necessitates that
thrusters are outboard and radiate their heat away,
relaxing constraints on the bus 1]
e Small satellite applications require
o shorter, more frequent thrust operations
o compact, integrated form factor

Approach:

e Treat Maxwell as an RF electronic system

e Mount PPU power electronics to baseplate

e Baseplate compresses to spacecraft thermal
structure when propulsion system is mounted

e Baseplate carries heat from thruster + PPU onto the
spacecraft thermal structure

# e Spacecraft thermal management system

determines power, and thrusting duty cycle

[1] Myers et al., “Hall Thruster Thermal Modeling and Test Data Correlation”, AIAA
Propulsion and Energy Forum (2016). -



Lessons learned - Technology challenges
How to minimize residual dipole moment with magnet assemblies

The problem:

e Permanent magnets on board small plasma thrusters
create permanent dipole moments on the spacecraft that
are torqued by LEO magnetic fields

The solution:

e All permanent magnets have a cancellation pair mounted
no closer than critical distance to primary magnet, forming
a quadrupolar assembly
S e +80% of residual dipole moment comes from magnet piece
T variability in magnetization strength
e Phase Four worked directly with the magnet manufacturer to
deliver flight magnets in controlled batches, with individually
measured dipole moments



axt with electrodeless propulsion?
capabilities by advancing development on new propellants

TOMORROW

Gen 2 Design
100 W, Xe 500 W, Xe Xe [Kr|l2] O2sN2
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Xe, 400 W

Kr,200 W

H20, 200 W IPA,100 W

Air,100 W




