Cubesat Constellation Architecture to Support Space-Based Property Claims

ISSC2020 Presentation (B.7) - May 11, 2020

Jacob Irwin Co-Author Eric Ward Co-Author

John Nicholas Gross Corresponding Author Dr. J.L. Galache Co-Author

Archived at *intersmallsatconference.com/* (see bottom §, 'Previous Conferences')

Challenges

- Property Ownership and Usage Rights in Space (Int'l Law and Military/Defense)
- Historical Norms

 Societal and Economic
- Registration (e.g., UN Registry for Objects in Space)

AC	(Outwa RICULTURE, CUSTOMS, IMA NATIONAL AERONAUTICS	IGRATION, AND	PUBLIC HEAD	лн
Marks of Nationality and Regist Departure from	ration U.S.A. MOON (Place and Country)	Flight APOLLO	11 Date HONOLULU, H	JULY 24, 1969 AWAIL, U.S.A.
	FLIGH ("Place" Column always to list orig	r ROUTING jin, every en-route stoj	p and destination)	
PLACE	TOTAL NUMBER	NUMBER OF ON THI	PASSENGERS IS STAGE	CARGO
CAPE KENNEDY	VEIL A ARSTRONG		MOON ROCK AND MOON DUST SAMPLAS Manifesta Attached	
JULY 24, 1969 HONOLULU	COLONEL EDWIN E, ALDRIN, JR.	Departure Place: Embarking Through on same flight Arrival Place:		
	Libellin - LT. COLONEL MICHAEL COLLINS	Disembarking Through on same flight		
Dashanting of Health			For a	Scial use only
Persons on board know the effects of accidents, dight:	rn to be suffering from illness other to a swell as those cases of illness disen NONE	han airsickness or bharked during the	HONOLUL Honolul ENT	U AIRPORT u, Hawaii ERED
Any other condition on Details of each disinso during the flight. If no	board which may lead to the spread of TO BE DETERMINED cling or sanitary treatment (place, de disinsecting has been carried out dur	disease: ate, time, method) ing the flight give	Entest Customs	9.)Marac Inspector
details of most recent d	Signed if pageing		-	

Missions Involving Secondary CubeSat Deployments

Objectives

- **Deployment** of 'Beacons' to Small-Body (Asteroid) Orbit (Orbital Insertion) with Sensory Instrumentation
 - Geolocationing (Precision) and In-Space Activity Capture (Timestamped Records with Accurate Location Matched with Intelligent Classification Software)
- Integration with Service Providers
- Collection Comprises a 'Universal Cadastre'
- *Cooperation* with Int'l & Domestic Regulatory Agencies

Architecture

Key Planning Steps and Events Sequence

I. Small-body, destination selection;II. Launch window selection;

Small-Body Selection

4660 Nereus (1982 DB)					
Δv (km/s)	4.985				
Taxonomy	C, X, E				
Spin Period (hours)	15.16				
Synodic Period (years)	2.225				
Orbit Condition Code	0				

Launch Windows for 4660 Nereus (1982 DB)

Key Planning Steps and Events Sequence (continued)

- I. Selection of small-body, probe destination;
- II. Select launch window;
- III. Launch to GEO;
- IV. Payload deployment;
 - V. Cubesat travels toward rendezvous with small-body;
- VI. Cubesat positioning in orbit around small-body;
- VII. Data acquisition;
- VIII. Relays to larger satellite receiver; and
 - IX. Continuous data acquisition, encoding, and relays.

Asteroid's Trajectory Itinerary

4660 Nereus	(1982 DB)		
SPK-ID	2004660	Orbit Condition Code	0
Absolute Magnitude	18.2	Size	330 m
Semi-major axis	1.486 AU	Eccentricity	0.359
Inclination	1.45°		

Trajectory Itinerary

	Date	ΔV			
Earth Departure	e Jan-13-2022	4.07 km/s		C3 = 19.3 km ² /s ² DLA = 6°	
1.31-yr transf	er				
Asteroid Arrival	May-08-2023	586 m/s			
1.31-yr total mission		587 m/s 4.66 km/s	post-injection ΔV total ΔV		
Solar range:	0.98 - 1.98 AU	Earth ra	nge:	0 - 2.94 AU	

Full Timeline

2020	2021	2022	2	023	2024	2025	2026	2027
	Design + Build	Outbound Cr	ruise	Asteroid	Operations			
		Í	Î	Î				_
	 Launch: Jan 2022 Asteroid acquisition Maneuvers to reach 	and approach maneu asteroid orbit	ivers					

- In-orbit observations and comms
- In-orbit servicing (*ongoing, as needed*)

Hardware

- Dispenser, Housing for Cubesat Constellation
- Locker
 - Cubesat Bus
 - Single-Board Computer and Memory
 - Thermal Radiator and Radiation Shielding
 - Solar Panels
 - Electric Propulsion System
 - Iris V2 CubeSat Deep-Space Transponder (IRIS), Omni-Directional UHF Antenna, and High Gain Reflectarray Antenna
 - Van Atta Reflectors
 - Sensors
 - CMOS Cameras
 - Laser Altimeter and Star Tracker

Mission Software

- Off-the-shelf:
 - Dispenser Timing/Precision Deployment
 - Power Management
 - Avionics, Attitude Control, and Propulsion
 - Station-Keeping
 - Relay Encoding and Timing
- In-house:
 - Data Capture, Handling, and Logging/Storage
 - Activity Classifier
 - Secure Encryption and Storage Distribution

Comms

- Secure Transmissions Over Long Distances
- Sacrifice Timeliness for Precision, Reliability
- Interoperable with Larger Satellite Communications Infrastructure
- Data Storage Distribution: Portion Kept in Space, Portion Sent to Earth-Based Servers

Regulatory Concurrence

- *Main Objective*: Legitimize In-Space Property Ownership & Usage Rights
 - Precise Location & Activity Data, Validating Legitimacy of Third-Party Claims
 - Service provider for State and Non-State actors
 - Digitally Connected with Appropriations Agencies at the International and Domestic Levels

Further Investigation

 Optimization algorithm for *constellation-scale* deployment (including lunar and Mars gravity assists and efficient rendezvous with multiple small-bodies)

- Comms hardware upgrades (e.g., IR)
- Sensor instrumentation upgrades
 (e.g., X-ray fluorescence imaging spectroscopy [see: <u>CubeX</u>, 2018])
- Modularity (pre-built extensibility for add-on modules)

contact@berkelyn.com

