

Ingenuity Mars Helicopter Technology Demonstration

Courtney Duncan, Jet Propulsion Laboratory – California Institute of Technology

May 11, 2020 Interplanetary SmallSat Conference Streaming IVIAY 11, ZUZU IIILCI PIAIICLAI Y JIIIAILJAL CUITEI CHLE JU CAHIHIIB
California Institute of Technology California Institute of Technology

Ingenuity Mars Helicopter Technology Demonstration

- The Mars Helicopter Technology Demonstration is now in final preparation for launch to Mars with JPL's Mars 2020 Rover in July 2020. The helicopter plans to execute the first heavier-than-air flight on another planet in April-May 2021. This presentation will overview the helicopter mission and requirements; the design and special circumstances of flight in the thin, cold air of Mars; and some of the commercial off the shelf technologies used.
	- With an emphasis on the telecom connection to the *Perseverance* Rover
- JPL URS292031 clearance number CL#20-1956

Why Do Planetary Helicopters?

Enabled Science Themes

Sedimentology and Stratigraphy

Astrobiology

- \checkmark High-resolution
- mapping \checkmark Traverse potential of 100+ km in relatively short time \checkmark Access steep slopes, cliffs and avoid obstacles

Polar and Mid-Latitude Volatiles

- \checkmark Characterize exposed layers comprising ice deposits
- \checkmark Fluxes of volatiles and dust
- \checkmark Recorded climate history
- √ Near-surface ground ice distribution

Geophysics

- \checkmark Exploring distal sites (good for spatially-limited detections and/or exposures)
- \checkmark Fast identification and delivery of astrobiologicalrelevant samples

\checkmark Crustal magnetic field measurements

- \checkmark Regolith properties
- (e.g., Phoenix TECP)
- \checkmark Near-surface volatiles
- (e.g., neutron spectrometer)
- \checkmark Subsurface imaging $(e.g., SAR)$
- \checkmark Instrument placement

From https://mepag.jpl.nasa.gov/

Atmospheric Science

- \checkmark Wind, P. T. dust. and chemical species (e.g., H_2O , CH_4) in boundary layer
- \checkmark Vertical and horizontal profiles
- \checkmark Active aeolian environments

Special Regions

- \checkmark Explore sensitive regions without risk of potential contamination
- \checkmark I.e., closely study RSL on steep slopes without contact

Mars Helicopter Technology Demonstration on Mars 2020

- Capable of flight in thin Mars atmosphere (~1% of Earth, equiv. 30 km)
- "Co-axial" Helicopter
- Blades 1.2-meter tip-to-tip
- \blacksquare Mass ~1.7 Kg
- Solar powered up to 90-second flight per sol
- Flight distances up to 300 m
- Heights up to 10 m
- **EXECUTE:** Autonomous flight & landing
- Up to 5 flights
- Telecommunication to Base Station on Rover
- Self-sufficient thermal control (nights < -100C)

AeroVironment – Major Industrial Partner

- Founded by Paul MacReady
	- Designer of the human-powered Gossamer Condor that won the Kremer Prize
	- And the Gossamer Albatross that crossed the English Channel
		- Piloted by Bryan Allen, now at JPL
- Simi Valley, CA
	- Unmanned electric aerial vehicles, drones
	- Experience with unusual designs and environments
	- Military systems, precision agriculture, etc.
- Mars Helicopter rotors, motors, servos, mast & wiring, landing gear

After Deployment from Rover, *Ingenuity* **Operates in Stand-Alone Fashion, with Radio Link to Base Station on Perseverance**

Potential Images From Rover

- NavCams at 100m:< 3.5 cm/pixel
- At highest resolution:
	- Blade length $= 36/5120$ pixels
	- Body cube = $3.6/5120$ pixels
- NavCam Imaging Plan Proposal:
	- 2x2 & 2x2 tile exposed and read out every ~ 6 seconds
- (c) California Institute of Technology

8

Mastcam-Z (Full Res) w/ some noise)

Blades are ~ 145 pixels at full zoom Body Cube ~ 19 pixels at full zoom

Deployment….

A: Jettison Debris Shield

¼" Cable Cutter Pyros fired severing restraint cables that allows the Debris Shield to drop from the Rover. After drop Rover executes forward drive to prepare for rest of deployment activities

B: Heli Launch Lock Release

Frangibolt energized releasing lower Heli Launch Lock Restraint. Egress Arm / Heli Assy held in place by Egress Arm Restraint

C: Egress Arm Restraint Release and Egress Arm Deploy Cable Cutter Pyro fired releasing MHDS Egress Arm. Egress Arm Release initiates rotation of Egress Arm & Heli with actuator in dynamic braking mode. Near the end of the deploy motion the actuator completes the arm deploy motion by driving to the hardstop and latching.

D: Leg Restraint Release

Cable Cutter Pyro fired releasing Helicopter Leading Legs allowing them to spring into their fully deployed state. Helicopter is fully configured for drop after this event.

E: Primary Heli Restraint Release & Heli Drop

Frangibolt energized releasing Helicopter from Rover & Egress Assy. Helicopter drops to Martian Surface below Rover. After nominal drop is confirmed via telemetry and imagery review Rover executes forward drive to allow Heli Solar Arrays to resume charging

Ingenuity Telecom Specifications

Radio

- 10 gram mass
	- Includes antennas and cables
	- 13.3 grams achieved (helicopter side)
- Rover side (HBE) uses the same electronics boards
- Telecom up to 1000 m., two-way
	- NFZ is 100 m. radius
	- no radio-navigation
- Over-the-air rates 20 kbps, 250 kbps
- DC power: $TX < 3$ W, RX < 0.2 W
- Temperature -40 to +85 C, -50 C non-op
- Protocol modified from ZigBee (IEEE 802.15.4)
- UART connection to SnapDragon "NAV" computer
- COTS Part Selection Criteria
	- Very Low Mass suggests COTS ISM
	- Low frequency for lowest omni to omni path loss, 900 MHz is lowest ISM band
	- "High Power" most ISM parts run a few 10s of mW, want closer to a watt
	- Diversity possibility of > 1 antenna

Cost: \$60 per unit Mass prepped: ~3.5g Power Out: 29 dBm (0.8 W) Band: 906-924 MHz (10 ch.) Antennas: 1 or 2

Helicopter FlatSet Electronics Core Module (ECM)

"cube" style in helicopter

"wallet" style in base station

MHS Flatset 001

HBS Antenna performance on Mars2020 rover

Map Coverage Around M2020 Rover on the Surface

Map coverage assuming min, mean, max polarization loss with blade rotating. The math is done for all azimuth angles around the helicopter. These results were obtained using **Bullington** with $h_t = 0.48$ m and $h_t = 1.23$ m.

Received power of $>$ -94dBm \Leftrightarrow 250kbps Received power of [-102, -94] dBm \Leftrightarrow 40kbps No link

Note: For best results, park the Rover in a "for comm" orientation.

5%

Map Coverage Around M2020 Rover Flying

Map coverage assuming min, mean, max polarization loss with blade rotating. The math is done for all azimuth angles around the helicopter. These results were obtained using **Bullington** with h_t =10m, h_r =1.23m, and Req = [0.25 - 1] km.

Operating Modes

"Silent" under HBS 'beacon' control (two node "Mesh" under modified 802.15.4)

* OTA: Over the Air

** Due to 15 chip spreading code

*** Due to Mcps signaling scheme

**** TCOW (Time Critical One Way); VOMIT (Vulnerable, One-way, MHS Information Transfer) (c) California Institute of Technology

Field Test (JPL Arroyo)

Helicopter Mockup with Antenna

View from Rover Mockup antenna to Helicopter Mockup

Rover Mockup

Questions?

jpl.nasa.gov