


### Iris Deep Space Transponder Testing at Space Dynamics Lab (SDL), Jet Propulsion Lab (JPL), and DSN Test Facility (DTF)-21

TOTAL CONTRACTOR OF THE PARTY

2019 Interplanetary Small Satellite Conf. San Luis Obispo, California, USA 29-30 April 2019

K. Angkasa, A. Babuscia, L. McNally, B. Burgett, and J. Lux Jet Propulsion Laboratory at the California Institute of Technology



# Outline



- History of Iris Deep Space Transponder
- 6 EM-1 CubeSats Using Iris
  - Lunar Polar Hydrogen Mapper (LunaH-Map)
  - Lunar IceCube
  - Lunar Flashlight
  - CubeSat for Solar Particles (CuSP)
  - BioSentinel
  - Near-Earth Asteroid Scout (NEA Scout)
- Iris vendor testing at Space Dynamics Lab (SDL)
- Iris mission-specific testing at Jet Propulsion Lab (JPL)
- Iris DSN RF Compatibility at DSN Test Facility (DTF)-21

## Iris History



- Iris V1.0: To extend CubeSat/SmallSat deep space capability, JPL introduced the Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE) mission<sup>1</sup>, coupled with the first-generation of Iris deep-space transponder<sup>2</sup>.
- Iris V2.0: The radio was further developed, matured, and in 2018 successfully flown onboard Mars Cube One (MarCO), to support InSight's Mars Entry, Descent, and Landing (EDL)<sup>3</sup>.
- <u>Iris V2.1</u>: The latest version of Iris includes design updates that support EM-1 CubeSats missions<sup>4</sup>.



Iris V1.0 Transponder Stack Telev



Specification Units **Downlink frequencies** MHz 8400-8600 MHz 7146-7235 UpInk frequencies 880/749 Turn-around ratio 62.5-6.25 M Downlink symbol rates sps Uplink data rates bps 62.5-8000 Modulation waveforms PCM/PSK/PM w/subcarrier PCM/PM w/biphase-L, BPSK **Telemetry encoding** Turbo (1/2, 1/3, 1/6) dB 3.5 Receiver noise figure (NF) -151 @ 20-Hz LBW **Carrier tracking threshold** dBm > 3.8 **RF** output power Watts Navigation Nonregenerative ranging Delta-DOR, Doppler Transmit phase noise (one-way noncoherent) dBc/Hz ≤ -20 @ 1-100 Hz ≤ -60 @ 100-100.000 Hz Oscillator stability ppm 0.001 @ Δt = 1 sec ≤ 1.0 Mass 0.56 (excl. SSPA/LNA) Volume U Power consumption 12.0 Rx-only Watts 33.7 Full Tx/Rx Sapcecraft bus interace 1-MHz SPI Bus voltage range v 9-28 -20 to +50 Allowable flight temperatures degC **Dvnamics** 14.1 grms random vibe **Radiation tolarenace** (total ionizing doze) > 23.0 krad

Iris V2.0 Transponder Stack



Iris V2.1 Key Specifications<sup>4</sup>

> 37 MeV-cm2/mg

Radiation tolerance

(single event latch-up)

Iris V2.1 Transponder Stack

<sup>1</sup> A. Klesh et al., "INSPIRE: Interplanetary NanoSpacecraft Pathfinder In Relevant Environment," in AIAA SPACE Conf. and Expo., San Diego, CA, 2013.

- <sup>2</sup> C. B. Duncan et al., "Iris Transponder Communications and Navigation for Deep Space", in *Small Satellite Conf.*, Logan, UT, 2014.
- <sup>3</sup> A. Klesh et al., "MarCO: Early Operations of the First CubeSats to Mars," in Small Satellite Conf., Logan, UT, 2018.
- <sup>4</sup> M. M. Kobayashi, "Iris Deep-Space Transponder for SLS EM-1 CubeSat Missions," in *Small Satellite Conf.*, Logan, UT, 2017.

### 6 EM-1 CubeSats Using Iris

- 6 EM-1 CubeSats have baselined to use Iris for basic telecom & navigations.
- They share common Telecom Hardware (Iris Radio, LNA/SSPA, Rx/Tx antennas) with different science goals & target destinations.
  - Mission Name Target Destination Max Range LunaH-Map Lunar ~1 Mkm Lunar IceCube Lunar ~1 Mkm Low Noise Amplifier Rx LGA Lunar Flashlight ~ 1 Mkm Lunar (LNA) CubeSat for Solar Particles Heliocentric ~15 Mkm ~ 84 Mkm **BioSentinel** Heliocentric Near Earth Asteroid Scout ~180 Mkm Asteroid Tx LGA Iris Radio Solid State Power Amplifier 34m (SSPA) Tx MGA 34m Deep Space Network (DSN)

EM-1 CubeSat Telecom Hardware Using Iris

- As such, the next few slides show the different test approaches, taken at the various test facilities (SDL, JPL, DTF-21) based on the commonality of Telecom Hardware and/or mission-specific requirements combined such as,
  - Higher data rates for lunar missions vs. heliocentric missions
  - Use of turn-around ranging, as opposed to Delta-DOR

**BioSentinel** 

**NEA Scout** 



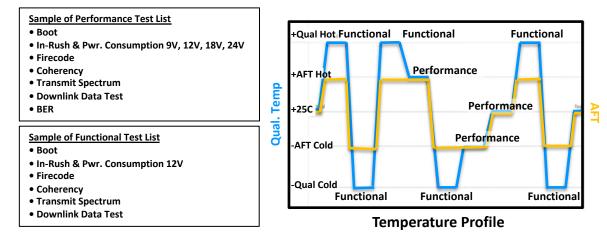
LunaH-Map



Lunar IceCube



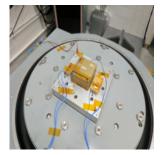
**Lunar Flashlight** 




CuSP



## Iris Vendor Testing at SDL


- Making the most of the commonality of the EM-1 CubeSat Telecom Hardware, testing at the Iris vendor (SDL) takes on the following approach:
  - Environmental Testing using the Engineering Unit (EDU)
    - TVAC Test at Qual. Temp. (-35C,+25C,+70C)
    - Vibration Testing
    - EMC Testing
  - And performed on each Flight Unit (FM)
    - Thermal Test at AFT (-20C,+25C,+50C)



 Test reports are captured in the respective EDU/FM End Item Data Package (EIDP) from SDL.



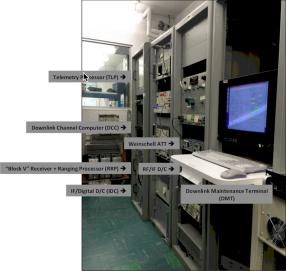
#### TVAC Test with EDU



#### Vibration Test with EDU



EMC Test with EDU (performed at JPL facility)


## Iris Mission-Specific Testing at JPL



- After delivery from SDL, mission-specific tests can be performed at JPL such as,
  - Higher data rate tests for the lunar missions e.g. downlink 256kbps Turbo code testing, using the JPL-lab equipped DSN Block V Receiver.
  - This is a useful "precursor" to the DSN RF Compatibility Test at DTF-21, which is to include, not only the downlink/telemetry test (using the DSN Block V Receiver), but also the uplink/commanding & ranging tests using the DSN Uplink & Ranging Assemblies.



Iris Hardware Inside the Screen Room (adjacent to DSN Block V Receiver)



JPL-lab Equipped - DSN Block V Receiver

• Test reports are captured in the respective JPL Hardware Review and Certification Record (HRCR) for each mission.

# Iris RF Compatibility Testing at DTF-21



- The RF Compatibility Test is performed to verify compatibility with the Deep Space Network, which takes place at the DSN Test Facility (DTF)-21 in Monrovia, CA.
- This is a spacecraft level test for approximately 1 week.

| Test Number | Test Name                                      |
|-------------|------------------------------------------------|
| RF0         | RF Link Calibration                            |
| RF1         | Uplink Receiver Threshold and AGC Calibration  |
| RF2         | Uplink Receiver Acquisition and Tracking Range |
| RF3         | Uplink Receiver Tracking Range                 |
| RF4         | Downlink Transmitter RF Power Output           |
| RF5         | Downlink RF Spectrum Analysis                  |
| RF6         | Downlink Receiver Threshold                    |
| CMD1        | Command Performance                            |
| TLM2        | Telemetry Performance                          |
| RNG1        | Spacecraft Range Delay Measurements            |
| RNG2        | Range Delay Measurement and Polarity Check     |

Sample of RF Compatibility Test List

- At the time of this writing, thirty percent of the 6 EM-1 CubeSats using the Iris Deep Space Transponder, have gone through the DSN RF Compatibility Testing successfully.
- Test reports are available through the respective DSN Mission Interface Manager (MIM) at JPL.





jpl.nasa.gov

Copyright ©2019 California Institute of Technology. Government Sponsorship Acknowledged.