2019 Interplanetary Small Satellite Conf. San Luis Obispo, CA, USA, 29-30 April 2019

Iris at Mars:

First Flight Use of Iris
Deep Space Transponder
on MarCO

Sarah Holmes
M. Michael Kobayashi
Mazen Shihabi

Jet Propulsion Laboratory at the California Institute of Technology

Contents

- MarCO Mission Overview
- Iris Overview
- Iris Testing for MarCO
- Activities on Launch Day
- Activities During Cruise
- Post-Launch Updates
- Achievements at Mars
- Current State of MarCO and Iris

MarCO Mission Overview

- Provide "real-time" data relay during EDL of InSight to Mars
- Bent-pipe:
 - UHF receive of EDL data
 - X-band transmit Direct-to-Earth
- Two for redundancy
- Tech demo InSight's success is independent of MarCO's success
- First deep space CubeSats
- MarCOs launch with InSight but travel independently to Mars

MarCO Specifications and Subsystems

- 6U (10x20x30cm)
- 13.5kg (30lbs)
- Subsystems:
 - Propulsion (VACCO)
 - Flight Computer (Astronautical Dev. LLC)
 - Electronic Power System (Astronautical Dev. LLC)
 - Solar Panel System (MMA Design LLC)
 - Attitude Control System (Blue Canyon Tech.)
 - Cameras
 - Telecom (JPL)

Iris Overview

- Specs: 0.77U, 1.2kg, 35W (Tx/Rx), 4W RF output
- Communicates with DSN at X-Band
 - CCSDS: AOS (down), TC (up)
- V2 design consists of five boards: UHF receiver, X-band receiver, X-band exciter, power, digital
- Virtex 6 with LEON3-FT softcore

Iris Testing for MarCO

- Ambient and Block V Rx at JPL
 - Downlink with Block V (DSN)

- InSight compatibility at Lockheed Martin
 - Pre-integration with MarCO

- DSN compatibility at DTF-21
 - Post-integration with MarCO

* Cassy: GSE developed with Iris, supports commanding and telemetry (tx/rx)

** Block V: 5th generation DSN receiver currently used at all DSN complexes

- May 5, 2018, from Vandenberg Air Force Base near Lompoc, CA
- MarCOs deployed after InSight
- First Contact:
 - Transponder beacons to indicate aliveness
 - Transmits telemetry data
 - MarCO-A: ~5:55am, 5 mins
 - MarCO-B: ~6:05am, 5 mins
 - Nominal telemetry on both SC
- Commanding performed during later pass
- Successful deployment of X-band reflectarray and UHF loop antenna

Activities During Cruise: Continuous

- Commanding (uplink data)
 - Pre-loaded command sequences in flight computer, allowing for some autonomous functionality
 - Uplinked new command sequences from ground as desired
- Telemetry (downlink data)
 - Downlinked telemetry data containing spacecraft health and status
 - Also downlinked images as available
- Navigation
 - Ranging Mode receives ranging signal (carrier tone) from ground and retransmits ranging signal back to Earth
 - DDOR Mode (delta differential one-way ranging) generates and transmits DDOR tones, which are received by multiple ground stations

Activities During Cruise: Special Cases

- HGA characterization
 - Verification that HGA in good condition after launch (performed on both SC)
 - Point the antenna to different attitudes and measure how the receive power changes on the ground
 - Nominal boresight, then +/- 2 degrees on different axes
- In-flight test of bent-pipe (EDL) mode
 - Verification that UHF antenna in good condition after launch
 - UHF transmit from Stanford ground station (simulating InSight) to Iris, X-band transmit from Iris to DSN
- Receive tests with Morehead State University ground station

Post-Launch Updates

• Command sequences for a variety of new Iris configurations

• Verified on MarCO Iris spare unit with Cassy GSE,

and on MarCO SC testbed

- Examples:
 - Additional Data Rates
 - Tx/Rx with Ranging
 - Carrier-Only Downlink
 - Adjusting Data Arbitration

Post-Launch Updates in Detail

- Higher data rate required alternate encoding scheme
 - Nominal encoding of Turbo 1/6
 - Requested configuration for downlink data rates including 8 kbps and 16 kbps
 - Turbo 1/6 at 16 kbps (192 kHz) violates MarCO's spectrum allocation license
 - To comply with NTIA license agreement, instead provided:
 - Turbo 1/6 at 8 kbps (96 kHz)
 - Turbo 1/3 at 16 kbps (96 kHz)

- Adjustable data prioritization
 - Data arbitration allows for alternate prioritization of EDL data vs TLM data
 - Not configurable or accessible through predefined register
 - Single-threaded software means deterministic locations of variables
 - Disassembled flight software image to find memory location for data arbitration variable

Mission Success at Mars

- Successfully completed EDL with zero data loss
 - Iris transmitted all data that it received
- EDL data recorded:
 - MarCO-A: 694 KB
 - MarCO-B: 712 KB
 - (more than MRO!)
- Performed retransmission post-EDL

First Image from InSight Lander

- MarCO enabled quick reception of InSight's first image on Mars
- Utilized post-launch updates, including arbitration scheme adjustments and increased data rates

MarCO-B Images

Approach to Mars

Current State of MarCO and Iris

- Lost contact a few weeks after EDL
 - MarCO-B: Dec. 29 2018; MarCO-A: Jan. 4, 2019
 - Current theory:
 - Issues on brightness sensors leading to attitude control trouble (greater distance requires more precise pointing) and inability to recharge batteries
- Heliocentric orbit; team may attempt to re-engage in early summer 2019
- Next version of Iris has been delivered to several CubeSat missions for EM-1

MarCO and Iris Teams

And many more not pictured!

