

Evaluation of Mother-Daughter Architectures for Asteroid Belt Exploration

Leonard Vance, Jekan Thanga, Erik Asphaug University of Arizona

Over 700,000 asteroids are currently cataloged

- Some as small as a few meters

Each tracked asteroid represents a potentially large source of material for development.

Low gravitational potential reduces the cost of visitation.

We have little understanding of their individual composition

Individual sample and return missions from a significant number of asteroids allows us to understand the statistical make-up of the belt, improving in-situ resource development.

Mission Overview:

Multiple Nano-spacecraft are deployed from a mothership within the asteroid belt, each executing a sample and return from a known asteroid.

Question: How effectively can a nano-spacecraft swarm explore the asteroid belt when limited to a 2 year lifespan?

Intercept Potential is established by determining inclusion within a nano-spacecraft maneuver boundary

Multiple intercepts appear possible even using a small delta-V within the limited lifespan of a Nano-satellite

Next Question: What does an optimal initial orbit look like?

Place nominal mothership orbit at the location of highest asteroid density

Many asteroids can be reached as nano-spacecraft flyout time increases

Hundreds of asteroids can be reached given reasonable delta-Vs and flyout times

Next Question: How much delta-V does it then take to stop and return to the mothership?

Overview of Nano-Spacecraft Delta-V components for Asteroid Sample and Return

Combining elements of the sample and return flight provides an initial assessment of the total Delta-V necessary

Number of viable missions rise quickly as nano-spacecraft delta-V increases above 2000m/s

A cutoff at 2500 m/s total mission delta-V provides 23 mission opportunities

Nano-spacecraft limited to 2 year lifespan

View Insert Tools Desktop Window Help

Mission Example:

2 year lifespan limit

2.5 km/s delta-V per spacecraft

Mothership in median Asteroid orbit (yellow)

All nanospacecraft launched at beginning of epoch (Blue)

All nanospacecraft return at two years

23 Asteroids sampled

Choice of initial orbit anomaly can significantly effect mission opportunities

A factor of two difference depending upon the choice of initial phase of orbit.

2 year lifetime assumed

- Establishing number of missions for each location is computationally intensive
 - Only 8 points derived for 6 hours of CPU work
- Use of a neural network to approximate delta-V calculations could significantly improve speed

Process:

- Sample random asteroid pairs
- Throw out pairs which are more than 1 AU apart
- Bootstrap until 500,000 pairs are selected
- Use conventional Computation to calculate sample and return Delta V for each of those 500,000 pairs
- Provide this database as input to a Neural Net for supervised training
- Run trades on number of hidden layers and nodes in each layer to establish best performance

Optimization of Number of Nodes for a 3 layer Configuration

The chosen 3 layer configuration provides a respectable estimate of sample and return delta-V

Sample and Return Missions Available

Heliocentric X coordinate (AU)

of Available missions

- Neural Network Delta-V approach increases calculation speed by over 1000x
- Sample and Return opportunities from a Mothership can now be mapped over the entire solar system
- 2 year nano-spacecraft lifetime
 5 km/s delta-V per spacecraft
 Assume mothership circular orbit
 Julian epoch 2458200.5 (March 2018)

Conclusions and Summary

The large number of tracked asteroids suggests use of swarms for exploration

The Delta-V required to enable large scale sample and return from a single mothership is approximately 2.5 km/s

A two year nano-spacecraft lifespan is adequate for this approach

Large scale sample and return exploration of asteroids is plausible with nano-spacecraft utilizing single stage propulsion