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Introduction

Why asteroid exploration is important
Surface mobility and AMIGO Overview
Engineering Model Testing

Sublimate Propulsion

Nozzle geometry design
MEMS Fabrication Methods



Motivation: Asteroid
Exploration
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SpaceTREX

Planetary Science
Decadal Survey highlights
key questions asteroids
can answet

In-situ analysis required
for in-depth analysis on
internal structure, surface
regolith, thermal effects,

ctcC.

Figure: Bennu Arrival from OSIRIS-Rex
(Credit: NASA, Goddard, University of Arizona)



Security/Deflection

Geohistory

Short, focused, high-risk, high-return...

Complements flyby and orbital observation science.



Collect science data at
multiple locations

Mobility through:

= Roving

» Internal actuation

s Mechanical systems

s Thr usting

Figure: Surface of Ryugu from MINERVA-II 1B
(Credit: JAXA, University of Tokyo et al.)
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AMIGO Mission Concept

Stereo imaging
Geologic imaging
Thermal fatigue

Seismic sensing

Electric field
measurements

Complements
orbital science and
flyby missions

~ Stereo Camera

Inflatable

Electric Field Sensor -

Corner Cube (Laser
Reflector)
Solar Cells

Main Body

Figure: AMIGO Overview



Housing for:

Computer/ power system
Inflatable deployment

Science instruments

Propulsion components

Internal View

Space Cube Mini - Computer

Springs

Inflatable Container

Solid Sublimate (Urea)
Swivel Motor

Propulsion Valves

Power Board

Camera

Battery

UHF Communications Board
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AMIGO Internals

Top View Internal

Figure: AMIGO Internals



Engineering Model



Components
Parallel effort to develop low cost 1U cubesat for
general use

Avionics: /4 U
» Computer: Teensy Board

= Batteries: Li-Ion 18650 (~17 WHYr)
Propulsion: /2 U

Inflatable structure: ¥4 U

Mock science instruments: ¥4 U

Figure: AMIGO Internals
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Testing
Microgravity simulation: helium filled pseudo-
inflatable

Simulant regolith to understand surface interaction

Test path planning algorithm from top mounted
camera

Use micro-thrusters for hopping

12



Sublimate Micro-
Propulsion



Sublimate Propulsion

Extension of cold gas systems

Usable with low-cost, readily-available chemicals

Store propellant as solid — higher storage density

Control chamber pressure by heating elements

Lower pressure than conventional cold gas

Solid
Particulate
Filter

14
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Figure: Sublimate Propulsion System Block Diagram
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SpaceTREx

» Bottom mounted MEMS
thruster chip for hopping

» x-y control authority

o Discretized micro-
nozzles allow three
saturation modes by
individual actuation

Figure: Thruster Chip
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Sublimate Propellant Candidates
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Nozzle Geometry
Design
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Algorithm Flow

Determine required thrust coefficient from required
F

PcAt
Determine viscous loss thrust coefficient through
derived throat and wall Reynold’s number

thrust: Cp =

C - 17.660'00328
Fv o ,/Ret,W

Determine discharge coefficient

Cp, = 0.8825 + 0.0079In(Re,)

18
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SpaceTREx

Algorithm Flow
Determine required isentropic thrust coefficient and
thrust: CF- — CF + CF
l 1%

Find nozzle geometry to produce such thrust from
corrected mass flow rate and exhaust velocity

Fi — }\mvei

m = Cp peAevei

__ 1hRT,
PeAe
Iterate through combinations of throat diameter

and expansion ratio
19
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MEMS Fabrication



Dry etching: deep reactive ion
etching

Wet etching:

= Anisotropic: Si reaction with
KOH

» Isotropic: Si reaction with
HF and HNO, B

Figure: Anisotropic vs Isotropic Etch
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SpaceTREx

Step 1: polymer
deposition

Step 2: ion
bombardment to
expose bottom face

Step 3: isotropic etch

Decrease etch time
each step to make

conical geometry

Figure: DRIE Etching Process

Very expensive
23
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Anisotropic Etching

Exploit crystal structure to etch along certain
lattices

Easily creates quasi-conical nozzles

Semi-vertex angle fixed by crystal plane etched
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Figure: Anisotropic Etch of Silicon <100> Face _ o
Figure: CFD of 35° Nozzle



Isotropic Etching

Etch along each crystal face at equal rates
Better for larger, simple geometries
Not limited to quasi-3D shapes

Downside: requires nitride deposition, not readily
available at UA facilities
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Micro-Milling
Micron-level precision

Able to produce rounded nozzle throats to mitigate
separation

Most feasible machining option for the simple
conical nozzles
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Conclusion

Showed reasoning behind an asteroid surface
hopping robot

Benefits of sublimate-stored, cold gas thrusting
system shown

Method for desighing micro-nozzles has been
developed

Fabrication methods explored based on traditional
MEMS manufacturing

27
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