

Towards Development and Testing of an Engineering Model for an Asteroid Hopping Robot

 G reg Wilburn¹, Leonard Vance¹

¹ Space and Terrestrial Robotic Exploration (Space TREx) Lab Aerospace and Mechanical Engineering, University of Arizona

> **4/30/2019 Interplanetary Small Satellite Conference San Luis Obispo, CA**

Introduction

- ⚫ **Why asteroid exploration is important**
- ⚫ **Surface mobility and AMIGO Overview**
- ⚫ **Engineering Model Testing**
- ⚫ **Sublimate Propulsion**
- ⚫ **Nozzle geometry design**
- ⚫ **MEMS Fabrication Methods**

Motivation: Asteroid Exploration

Asteroid Exploration

- ⚫ **Planetary Science Decadal Survey highlights key questions asteroids can answer**
- ⚫ **In-situ analysis required for in-depth analysis on internal structure, surface regolith, thermal effects, etc.**

Figure: Bennu Arrival from OSIRIS-Rex (Credit: NASA, Goddard, University of Arizona)

Asteroid Surface Exploration

Geohistory Security/Deflection ISRU

Short, focused, high-risk, high-return…

Complements flyby and orbital observation science.

Asteroid Surface Hopping

- ⚫ **Collect science data at multiple locations**
- ⚫ **Mobility through:**
	- [◼] **Roving**
	- Internal actuation
	- Mechanical systems
	- [◼] **Thrusting**

Figure: Surface of Ryugu from MINERVA-II 1B (Credit: JAXA, University of Tokyo et al.)

AMIGO ConOps

AMIGO Mission Concept

- ⚫ **Stereo imaging**
- ⚫ **Geologic imaging**
- ⚫ **Thermal fatigue**
- ⚫ **Seismic sensing**
- ⚫ **Electric field measurements**
- ⚫ **Complements orbital science and flyby missions**

Figure: AMIGO Overview

AMIGO Internals

- ⚫ **Housing for:**
	- **Computer/** power system
	- Inflatable deployment
	- [◼] **Science instruments**
	- **<u>Example 10</u>** Propulsion components

Figure: AMIGO Internals

Engineering Model

Components

- ⚫ **Parallel effort to develop low cost 1U cubesat for general use**
- ⚫ **Avionics: ¼ U**
	- Computer: Teensy Board
	- Batteries: Li-Ion 18650 (~17 WHr)
- ⚫ **Propulsion: ¼ U**
- ⚫ **Inflatable structure: ¼ U**
- ⚫ **Mock science instruments: ¼ U**

Testing

- ⚫ **Microgravity simulation: helium filled pseudoinflatable**
- ⚫ **Simulant regolith to understand surface interaction**
- ⚫ **Test path planning algorithm from top mounted camera**
- ⚫ **Use micro-thrusters for hopping**

Sublimate Micro-Propulsion

Sublimate Propulsion

- ⚫ **Extension of cold gas systems**
- ⚫ **Usable with low-cost, readily-available chemicals**
- ⚫ **Store propellant as solid – higher storage density**
- ⚫ **Control chamber pressure by heating elements**
- ⚫ **Lower pressure than conventional cold gas**

Thruster Chip

- ⚫ **Bottom mounted MEMS thruster chip for hopping**
- ⚫ **x-y control authority**
- ⚫ **Discretized micronozzles allow three saturation modes by individual actuation**

Figure: Thruster Chip

Sublimate Propellant Candidates

Nozzle Geometry Design

Algorithm Flow

- ⚫ **Determine required thrust coefficient from required** thrust: $C_F =$ \boldsymbol{F} $\boldsymbol{p_c A_t}$
- ⚫ **Determine viscous loss thrust coefficient through derived throat and wall Reynold's number**

$$
\mathcal{C}_{F_{\boldsymbol{\mathcal{v}}}} = \frac{17.6e^{0.0032\varepsilon}}{\sqrt{Re_{\boldsymbol{t},\boldsymbol{w}}}}
$$

⚫ **Determine discharge coefficient**

 $C_D = 0.8825 + 0.0079ln(Re_t)$

Algorithm Flow

- ⚫ **Determine required isentropic thrust coefficient and** thrust: ${\boldsymbol{\mathcal{C}}_F}_i = {\boldsymbol{\mathcal{C}}_F} + {\boldsymbol{\mathcal{C}}_{F}}_v$
- ⚫ **Find nozzle geometry to produce such thrust from corrected mass flow rate and exhaust velocity**

$$
F_i = \lambda \dot{m} v_{e_i}
$$

$$
\dot{m} = C_D \rho_e A_e v_{e_i}
$$

$$
v_{e_i} = \frac{\dot{m} R T_e}{p_e A_e}
$$

⚫ **Iterate through combinations of throat diameter and expansion ratio**

MEMS Fabrication

Etching Techniques

- ⚫ **Dry etching: deep reactive ion etching**
- ⚫ **Wet etching:**
	- Anisotropic: Si reaction with **KOH**
	- Isotropic: Si reaction with HF and $HNO₃$

Figure: Anisotropic vs Isotropic Etch

- ⚫ **Step 1: polymer deposition**
- ⚫ **Step 2: ion bombardment to expose bottom face**
- ⚫ **Step 3: isotropic etch**
- ⚫ **Decrease etch time each step to make conical geometry**
- ⚫ **Very expensive**

Anisotropic Etching

- ⚫ **Exploit crystal structure to etch along certain lattices**
- ⚫ **Easily creates quasi-conical nozzles**
- ⚫ **Semi-vertex angle fixed by crystal plane etched**

Absolute Pressure $2.01e + 05$ $1.94e + 05$ 1.86e+05 1.78e+05 1.70e+05 $1.62e + 05$ $1.54e + 05$ 1.46e+05 1.38e+05 1.30e+05 $1.23e + 05$ $1.15e + 05$ $1.07e + 05$ $9.89e + 04$ $9.10e + 04$ 8.31e+04 7.52e+04 6.73e+04 5.95e+04 5.16e+04 $4.37e + 04$ [pascal] 0.001 (m

Figure: Anisotropic Etch of Silicon <100> Face

Figure: CFD of 35° Nozzle

Isotropic Etching

- ⚫ **Etch along each crystal face at equal rates**
- ⚫ **Better for larger, simple geometries**
- ⚫ **Not limited to quasi-3D shapes**
- ⚫ **Downside: requires nitride deposition, not readily available at UA facilities**

Micro-Milling

- ⚫ **Micron-level precision**
- ⚫ **Able to produce rounded nozzle throats to mitigate separation**
- ⚫ **Most feasible machining option for the simple conical nozzles**

Conclusion

- ⚫ **Showed reasoning behind an asteroid surface hopping robot**
- ⚫ **Benefits of sublimate-stored, cold gas thrusting system shown**
- ⚫ **Method for designing micro-nozzles has been developed**
- ⚫ **Fabrication methods explored based on traditional MEMS manufacturing**

Thank You

⚫ **Acknowledgement: Dr. Eniko Enikov**