

A small spacecraft to explore the Sun's control of Jupiter's magnetosphere

Frank Crary and Fran Bagenal

University of Colorado

Laboratory for Atmospheric and Space Physics

Interplanetary Small Satellite Conference California Polytechnic State University 29-30 April 2019

Jupiter's Magnetosphere and the Sun

- Jupiter's magnetosphere is big
 - Magnetopause at 75 R_J (Earth's is at 10 R_E)
- Dynamics are mostly driven by lo
 - ~1000 kg/s of sulfur and oxygen ions
 - Coupling to planet's rotation
 - Transport out of plasma torus
- But what does "mostly" mean?
 - 99%? 75% 51%
 - Observations also show solar wind driver
 - Aurora and auroral radio emissions
 - Connected to regions deep in magnetosphere
- How? Theoretically very hard to explain

Limits to Current Data

- Few frequent, long-term data sets
 - Propagation from Earth is uncertain ±20 hr. or worse
 - In situ solar wind measurements near Jupiter are rare
 - Large amounts of observing time on major telescopes is hard to get
 - Exception is Hisaki (but unresolved)
- Example: Juno approach phase
 - Best available data set
 - 47 Hubble orbits (~30 min)
 - Roughly 1/day
 - 56 days of solar wind data
 - With a 14-day gap
 - Only one clear event

Slow Jovian Flyby Mission Concept

- Small spacecraft to observe near Jupiter
 - Near Jupiter but not in orbit, within 1000 R_J (~0.5 AU)
 - Near-Continuous observations for 300 days (135 inside 500 R_J)
- ESPA Grande secondary payload launched to $C_3 \sim 0$
 - For example, SIMPLEx mission launched with IMAP (Oct. 2024)
- Slow flyby of Jupiter
 - Image Jupiter's aurora at HST-quality resolution (< 500 R_J)
 - 8 times per rotation (74.4 min.), 90% duty cycle due to downlinks
 - Observe solar wind conditions continuously
- Return minimum data set during encounter
- Return full data set after encounter, when Earth is closer
 - All data returned by NEO departure +2245 days (6 years)

Trajectory

- Secondary payload launched to $C_3 = 0$
- Commission in Near Earth Orbit
- Wait for departure window
 - Flexible launch as secondary payload
- Solar electric propulsion
 - Raise aphelion to 5.1 AU
 - 148 days under thrust
 - 80% duty cycle
 - Large solar arrays for SEP also power spacecraft at aphelion
- Eject SEP stage after thrust arc
 - Electric propulsion and magnetic cleanliness
- Jupiter encounter: Departure + 1070 days
- Next perigee: Depature + 2175 days

Payload and Measurements near Jupiter

- Far ultraviolet auroral imager (est. 5 kg)
 - 37.5 km/pixel at 250 R_J (0.5 mrad/pixel)
 - Better than Hubble Space Telescope STIS at 500 R_J
 - Two filters, Lyman and Werner bands of H₂ (120-165 nm)
 - Frame edited to 1.5 x 0.75 R_J images (north and south aurora)
 - Compressed to 4 bits/pixel (average, 3:1)
- Solar wind ion spectrometer (est. 1 kg, <15 bps)
 - High energy resolution (<3%) over 500 eV to 8 keV
 - Limited angular resolution, 5-minute time resolution
 - On-spacecraft calculation of density, speed, temperature
- Magnetometer (est. 1 kg plus boom, <10 bps)
 - Low time resolution (20 s) with high rate mode, $\pm 10 \text{ pT}$
 - 2 meter boom (2x spacecraft bus dimensions)
- Other instruments desirable but not in baseline
 - E.g. auroral radio emissions, EUV spectra of lo plasma torus

ESPA Grande Secondary Payload

- 4 secondary payloads per ESPA ring
- 24" diameter port, 42" x 46" x 38" maximum volume
 - 106 x 116 x 96 cm volume
 - Approximately 10 x 11 x 9 U (990 U)
- 180 kg maximum mass
 - NASA SIMPLEx AO gives 180 kg limit for ESPA Grande
 - That is actually mass limit for ESPA, ESPA Grande is 320 kg
 - That's ok. Surface area and volume are more constraining
- The current concept is not fully optimized
 - Number of thrusters is quantized
 - Adding more without adding power to operate them doesn't help
 - Surface area can be used to solar arrays or antenna area
 - Result is viable, but could be improved

Solar power

- Power SEP inside 1.5 AU: 2525 W at 1 AU
- Power spacecraft at 5.2 AU: 90 W at 5.2 AU
- 4, Northrop Grumman UltraFlex arrays
 - 1.95 m diameter
 - 17 kg total mass
 - ~ 4 x (1 m x 0.12 m x 0.12 m) stowed
- 1 axis articulated to stay Sun pointed with
 - Telescope-to-Jupiter
 - HGA-to-Earth
 - SEP pointing
- Accommodating full articulation is difficult
 - Seems to fit, but with little margin
 - Antenna area (width) versus clearance

Solar Electric Propulsion System

Laboratory for Atmospheric and Space Physics University of Colorado **Boulder**

Multiple BHT-600 in a Cluster

- 3, Busek BTH-600
 - 200-800 W each
 - 39 mN at 600 W
 - I_{sp} of 1500 s
 - lodine propellant
 - 8.5 kg (3 thrusters+cathode)
- Assumes 80% duty cycle
- Throttled and switched off as solar power decreases
- < 3200 hours on time per thruster
- Ejected at end of thrust arc
 - Greatly simplifies EM cleanliness

Telecommunications

- Modeled on MarCO, except:
- IRIS transponder, 35 W input
 Assumes Ka not X band
- Larger retroreflector antenna
 1.7 x 1 meter
- Use 34 not 70-m DSN stations
 - One 8-hour track every 99 hrs.
 - 10 Jovian rotations
- 1 kbps during Jupiter encounter
- Up to 128 kbps after encounter
 - Near perihelion, at 0.6 AU range

Difference from MarCO	Gain
Ka instead of X band	+6 dB (approx.)
34-m instead of 70-m	-6 dB (approx.)
1.7 m ² instead of 0.18 m ²	+9.75 dB
Free space loss	+3.22 dB at 0.6 AU
	-17.06 dB at 6.2 AU
Net	+13.0 to -7.3 dB
Downlink data rate	128 kbps at 0.6 AU
	1 kbps at 6 2 AU

The Rest of the Spacecraft

Item	Mass [kg]
Propulsion	
3, Busek BTH-600 Hall effect thrusters	8
Iodine propellant	86
Fuel tank	8.5
Power, 4, 1.9 m dia. UltraFlex arrays	18.25
Payload	7
"Everything Else"	32.5
Margin	19.75
Total	180

- Margin assumes
 - 10% for existing (COTS) systems
 - Solar arrays and thrusters
 - 30% of new systems
 - What is the margin policy for COTS hardware?

- "Everything else" includes:
- Attitude control
 - Reaction wheels
 - Star trackers
 - Cold gas thrusters (desat.)
 - Use BCT-based system?
- Command & Data Handling
 - Normal functions plus:
 - Image compression
 - Frame editing
 - Solar wind moment calculations
- >100 Gbits data storage
 - 12 Gbytes (\$25 memory stick...)
- Mechanical structures
 - Booms for solar & magnetometer

Conclusions

- Understand solar wind's influence on Jupiter's magnetosphere
 - Small Spacecraft making focused observations near Jupiter
 - Slow flyby rather than orbit, but near-continuously for ~10 months
- ESPA Grande secondary payload launched to $C_3 \sim 0$
 - Checkout in solar near Earth parking orbit
 - No conflict between primary and secondary launch windows
- Electric propulsion to a 1.1 x 5.1 AU orbit, aphelion near Jupiter
- Power for Hall thruster @1.5 AU = power for spacecraft @5.1 AU
- Only transmit small fraction of data during Jupiter encounter
 - Performance floor: 1 edited image set per rotation and solar wind data
- Return all data by departure +2175 days (5.95 years)
 - Mostly near perihelion, spacecraft-Earth range down to 0.6 AU