This presentation was created by students as an educational activity at the University of Michigan, and does not represent an actual mission.

Mars Areo TGL

Interplanetary Small Satellite Conference, 2019

Collaboration Background

- This concept study was developed as an educational exercise for UM students, as part of a yearlong SURP collaboration, with the goal of providing them exposure to a real-world mission concept. The mission concept was selected as the context for this study to provide boundaryconditions based on realistic scientific interests
- All allocations provided to the student team were based on reasonable assumptions by the JPL support team; they are pre-decisional and are for planning and discussion purposes only
- At JPL, the SURP effort was supported by Adrian Arteaga-Garcia, Nathan Barba, Serina Diniega, Danielle Marsh, Bogdan Oaida, Rick Redick, Vlada Stamenkovic, and Ryan Woolley
- At UM, the SURP effort was supported by Prof. Nilton Renno, and the SPACE 582/583 students: Ryan Whitney, Vishnu Saravanan, James Apfel, Taylor Morton, James Cooney, Shawn Lu, Sotirios Dedes, Nirmal Patel

Science Objectives

- MSL (Curiosity) found seasonal shifts in background levels of methane near Gale Crater over three Martian years
	- Methane observation confirmed by Mars Express one day after MSL
	- Column abundance (15.5±2.5 ppbv) greater than that predicted from either UV degradation of impact-delivered organics on surface or annual surface pressure cycle
- ExoMars mission was sent to investigate the atmospheric composition of Mars, but has yet to find evidence
- Mars Areo TGL would be capable of localizing the sources and sinks of any methane observations

- 1. Determine diurnal and seasonal variations of methane and its isotopologues
- 1. Demonstrate feasibility of electric propulsion (EP) for interplanetary small satellites
- 1. Make a case for Direct-to-Earth (DTE) communication at Mars for small satellites

SmallSat launched as a secondary payload with the ESPA Grande Ring Interface.

- Mass:
	- 270 kg wet
	- 185 kg dry
- Form Factor: less than 1m x 1m x 1m stowed
- Payload: Ultra-High Sensitive (UHS) Miniaturized Spectrometer

Stowed Spacecraft Configuration

Payload - UHS Miniaturized Spectrometer

Surface Scan (Coarse Mode)

Fine Mode

Other Specifications

Bus Subsystem Design

ADCS 2x Star Trackers 4x Gyros - 6x Sun Sensors - 4x RWAs - 0.003 deg Pointing Accuracy *Spacecraft within 4m fairing* **Mechanical** - Aluminum frame (7075) - Honeycomb panels **C&DH** 2x BAE RAD 5545 flight computer **Propulsion** 1x RIT 2X - 4X RIT 10 EVO 105 Kg Capacity Xenon Tank - PPU

Bus Subsystem Design

Thermal

- Z93 white paint
- Internal zone heaters
- No radiators required

EPS

- 2x deployable articulated solar arrays (14.3 m² total)
- 8x Li-ion battery cells with total capacity of 312 W-Hr

Stowed configuration

Communications

- Ka-band 1.2 m deployable high gain antenna
- TWTA
- Small Deep Space Transponder

Previous Mars Missions

Communications: Direct-To-Earth

- Current communication options from Mars to Earth:
	- Relay via MAVEN/MRO
	- DTE
- MRO and Maven considerations
	- MRO on fourth extension of mission lifetime (to 2021)
	- MAVEN on first extension of mission lifetime (to Sept 2019)

Communications: Antenna

- Deployable Ka-Band High Gain Antenna
- Mass: 5 kg
- Vol (stowed): 2.5 x 2.5 x 3.5 U
- Diameter: (deployed): 1.2m
- Data Rate: 0.2-5.9 Mbit/s
- Input Power: 400 W
- RainCube DHGA Heritage Images: Sauder, J. F., and Thomson, M. W., "The Mechanical Design of a Mesh Ka-band

Propulsion Architecture

- 1 RIT 2X
	- Earth Escape
	- Interplanetary Transit
- 4 RIT 10 Evos
	- 2 burn at a time
	- Mars Capture
	- Stationkeeping
	- Momentum Dumping

Orbital Maneuvers

• Localization of methane could be conducive to delineating between biotic and abiotic sources

• Electric propulsion has great utility and should be further developed for interplanetary missions

• Deployable antenna technology will become increasingly significant for small satellite missions

Questions?

Backup Slides

Concept of Operations

***MY = Martian Years**

S/C integrated with ESPA Grande and launched on Atlas V as secondary payload. Atlas V will take ESPA Grande to GTO and deploy S/C.

LAUNCH (1 hour)

Upon escaping Earth's gravity, S/C will cruise to Mars and spiral into areostationary orbit.

> **Interplanetary Transit (18.5 months)**

Earth Escape (2.5 months)

In GTO, S/C will separate from ESPA Grande and conduct performance checkout. Then, S/C will deploy solar arrays and build velocity for escape to Mars.

OBSERVATION (3 MY*)

In areostationary orbit S/C will conduct another performance checkout. Then, S/C will begin scientific observation + data collection with direct to Earth communications

Day in the Life - Nominal Ops

Day in the Life - Worst Case

 $1:00$ $\sqrt{1 \cdot 23:00}$

 2 6

06:00 18:00

3

5:00

7:00

12:00 (Sun-side)

4

00:00

S/C Stationkeeping

17:00 $\sqrt{5}$

19:00

S/C DTE Communication 2 + Relay