

Parness et al., 2013

Advancing Microspine Gripper Modelling for Microgravity Climbing

Steven Morad SpaceTREx, University of Arizona

Outline

- ⚫ **Introduction**
- ⚫ **Background**
- ⚫ **Objective**
- ⚫ **Method**
- ⚫ **Conclusion**
- ⚫ **Future Work**
- ⚫ **Depending on time: Future Work - Scoring Grips**

Introduction – Microgravity Surface Mobility

- ⚫ **What is microgravity surface mobility?**
	- Moving about the surface of small bodies such as **asteroids, comets, and artificial satellites**

Introduction – Case for Microgravity Mobility

- ⚫ **Microgravity surface mobility opens the door to surface operations on small bodies**
	- **Small body science and analysis**
	- [◼] **Small body in-situ resource utilization**
	- Satellite/ISS/spacecraft repair and servicing

Lucasfilms, 1999

Background – Mobility Methods

- ⚫ **Mobility on microgravity bodies is difficult**
- ⚫ **Wheels can't get traction, reaction torque sends rovers into a tumble**
- ⚫ **Hopping robots can inadvertently escape the body**
	- Especially with nonuniform gravity
- ⚫ **Hovering requires corrections which use fuel over time, and in the case of asteroids blows regolith everywhere, obscuring cameras**
- ⚫ **What about climbing?**

Background – Define Climbing

- ⚫ **We define climbing as an incremental process where part of the climber is always in contact with the body**
	- [◼] **Does not require fuel**
	- [◼] **Cannot escape body unless grip fails**
	- **Allows for momentum transfer to body**
		- Can damp motion from reaction forces/torques **generated moving around**

Background – Anchoring Methods

- ⚫ **How do we keep the climber in contact or "anchored" to the body?**
	- [◼] **Electroadhesion**
	- [◼] **Microspines**

Background - Electroadhesion

- ⚫ **Electroadhesive Pads**
	- Run current through **it, gets sticky**
	- Requires constant **power to maintain hold**
	- **Relatively weak adhesive force**
		- \blacksquare 0.1-1 N/cm^2

Tweney/SRI, 2011

Background - Microspines

- ⚫ **Microspines**
	- [◼] **No power required to maintain hold**
	- **Relatively strong adhesive force (1-2N per spine)**
	- **Does not work well on microscopically smooth surfaces**
		- Rare in nature

Parness et al., 2017

Background – Microspine Mechanism

- ⚫ **Hooks/spines grip onto surface imperfections (asperities)**
- ⚫ **Retracting the spines creates a grasp**

Background – Microspine Gripper

- ⚫ **Spines are arranged radially into grippers**
	- Resists larger **torques/forces in many directions**

Parness et al., 2013

Background – Theoretical Microspine Model

- ⚫ **Original model depends mostly on surface normal and approach angle**
- ⚫ **Model breaks down in real world**
	- [◼] **No guarantee which green region will be gripped**

Asbeck et al., 2005

Background – Stochastic Microspine Model

- ⚫ **Extends original model to better simulate real world conditions**
- ⚫ **Provides probability of engaging over a planar surface**

Jiang et al., 2018

Objective

- ⚫ **Extend the planar probabilistic microspine model to large scale surface geometry (an arbitrary polygon mesh)**
	- From 3D scans or real-time with LiDAR

Nakisdashvili, 2016 14 14

Method - Introduction

- ⚫ **We are going to focus on a single spine at first**
	- Method extends to all spines
- ⚫ **Operating on a 3D mesh made of triangular or rectangular faces**

Method – Spine Geometry

- ⚫ **Spine defined as vector making** angle θ with surface normal \boldsymbol{n}
	- \bullet **determines probability of grasping, strength of grasp, etc.**

Method – 3D Rotation

- ⚫ **Rotate spine from inertial coordinate frame I into triangular face coordinate** frame T by α , β , γ
	- $\mathbf{s}' = R_{\alpha,\beta,\gamma} \mathbf{s}$
- $\theta = a cos(n \cdot s')$
- \bullet Plug θ into model
	- Provides important **values like holding force for a face**

Method – Probabilistic Contact

- ⚫ **We use Jiang et al.'s stochastic model to model** probability of a spine grasping a planar face f_n in a **mesh**
	- \blacksquare $P(f_n = T)$; Probability of grasping face *n*
	- \blacksquare $P(f_n = F)$; Probability of not grasping face *n*
	- $= P(f_n = T) = 1 P(f_n = F)$
	- **Example 1.1 Random variables** f_n **are <u>independent</u> they do not depend on previous faces**

Method – Probabilistic Contact Chain

- ⚫ **The path of a spine as it retracts forms a chain of surface faces it passes over**
	- [◼] **Contact faces denoted in red**
	- \blacksquare $P(f_1), P(f_2), \ldots P(f_n) \ldots P(f_N)$
		- [◼] **Probabilities of grasping each face**

Method – Grasp Probability Derivation

- ⚫ **The probability of the spine grasping and stopping at any particular face is described as slipping on the previous faces and stopping and grasping on the nth face**
	- \blacksquare $P(s_n = T | s_{n-1}, s_{n-2}, ... s_1 = F)$
	- \blacksquare Note: stopping $P(s)$ (dependent) is different than gripping $P(f)$ (independent)

Method – Conditional Dependence

⚫ **If the spine stopped at a previous face, it is not at the current face**

$$
P(s_n = T | s_{n-k} = T) = 0 \ \ k \in \{1 \dots n\}
$$

Method – Conditional Independence I

⚫ **If the spine slipped past the previous face, the probability of stopping at the current face is the product of the two probabilities of gripping each face independently**

$$
P(s_2 = T | s_1 = F) = P(f_2 = T)P(f_1 = F)
$$

- **Conditional independence**
- \blacksquare Connects $P(s)$ to $P(f)$

Method – Conditional Independence II

⚫ **Extending to all faces we find**

$$
P(s_n = T | s_{n-1}, s_{n-2}, ... s_1 = F) =
$$

$$
P(f_n = T)P(f_{n-1} = F)P(f_{n-2} = F) ... P(f_1 = F)
$$

Method – Grasp Probability Expression

⚫ **Simplifying we get**

$$
P(s_n = T | s_{n-1}, s_{n-2}, \dots s_1 = F) =
$$

$$
P(f_n = T) \prod_{i=1}^{n-1} P(f_i = F)
$$

■ **Recap: this expression gives us the probability of a spine stopping at a specific face**

Method – Bayesian Network

- ⚫ **This expression can be represented as an acyclic Bayesian network**
	- [◼] **Visual representation of the math**
	- **Network nodes are the probabilities of the random variable**

Method – Belief Propagation

⚫ **We can find the probability mass function (PMF) by evaluating**

$$
P(f_n = T) \prod_{i=1}^{n-1} P(f_i = F)
$$

for $n \in \{1, 2, ... N\}$

Method – Maximum Likelihood Estimation

⚫ **We can use maximum likelihood estimation (MLE) to find the most likely face the spine will be on**

$$
\max_{n\in\{1,2,\ldots,N\}} P(s_n) = 5
$$

Method – MLE Gripper Arrangement

⚫ **Running MLE on each spine will produce the most likely arrangement of the gripper**

Method – High Probability Regions

- ⚫ **More importantly, we have the per-spine probability distribution**
- ⚫ **We can define likely grasp regions for each microspine**
- ⚫ **We can evaluate a grip by the likely regions instead of just single points**
	- More robust to **uncertainty than a single point**

Summary

- ⚫ **We extended probabilistic microspine model to work on large, complex 3D meshes**
	- Rotated spines to the 3D mesh faces
	- Derived an expression for a spine stopping at a **specific face**
	- Found PMF (discrete probability distribution) of **spine a stopping over all faces**
	- Combined PMFs for all spines to model the **entire gripper**

Future Work

- ⚫ **Still a work in progress**
- ⚫ **Experimental validation**
- ⚫ **Scoring the grip**
	- Integration into a motion planner for climbing **robots**

Questions?

- ⚫ **Want a way to "score" grips for robotic climbers**
	- Multiple locations to grip, scoring lets us select **the best location to place the gripper**
	- Is a grip risky? How much force/torque can it **hold?**

• Find *k* **most likely gripper configurations by permuting most likely spine configurations**

- ⚫ **Score each of the gripper configurations based on criteria**
	- Min lateral holding **torque**
	- [◼] **Mean normal holding force**
	- Etc.

- ⚫ **Gripper configuration score fed to motion planner**
	- [◼] **Avoid risky grips**

