# BioSentinel - Spacecraft and BioSensor Flight Unit Development

Bob Hanel Sergio Santa Maria

Interplanetary Small Satellite Conference 2019 San Luis Obispo, CA 4/29/19

Authors Affiliated with NASA Ames Research Center, Moffett Field, CA



#### **BioSentinel – Spacecraft and BioSensor Flight** Unit Development

Bob Hanel Sergio Santa Maria 4/29/19

NASA Ames Research Center, Moffett Field, CA



# **BioSentinel Project Objectives**

- Advanced Exploration Systems (AES) selected BioSentinel to fly on the Space Launch System (SLS) Exploration Mission (EM-1) as a secondary payload
  - Payload selected to help fill HEOMD Strategic Knowledge Gaps in Radiation effects on Biology
  - Current EM-1 Launch Readiness Date (LRD): 6/26/2020
  - Delivery to Dispenser Integrator, Tyvak: 10/28/2019
- Key BioSentinel Project Objectives
  - Develop a *deep space nanosat* capability
  - Develop a *radiation biosensor* useful for other missions
  - Define & validate SLS secondary payload interfaces and accommodations for a biological payload
- Collaborate with other EM-1 selected missions (non-biological), particularly:
  - Near Earth Asteroid (NEA) Scout (MSFC)
  - Lunar Flashlight (JPL)







BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation, and <u>will provide a tool to study the true biological effects of the space environment at different orbits</u>.





#### **BioSentinel Science**



BioSentinel is a yeast radiation biosensor that will measure the DNA damage response caused by space radiation, and <u>will provide a tool to study the true biological effects of the space environment at different orbits</u>.

#### Why?

Space radiation environment's unique spectrum cannot be duplicated on Earth. It includes high-energy particles, is omnidirectional, continuous, and of low flux.

#### How?

Lab-engineered *S. cerevisiae* cells will sense & repair direct (and indirect) damage to their DNA. Yeast cells will remain dormant until rehydrated and grown using a microfluidic and optical detection system.



#### Why budding yeast?

It is an eukaryote (similar to humans); easy genetic manipulation; assay availability; flight heritage; ability to be stored in dormant state

While it is a simple model organism, yeast cells are the best for the job given the limitations & constraints of spaceflight



# BioSentinel Overview – Deployed & Stowed



#### **BioSentinel Subsystem Overview**





Launch on Space Launch System Exploration Mission #1 (SLS EM-1) as a secondary payload





#### **BioSentinel – Science Accomplishments**

Yeast strain selection:

- Wild type strain (control for unrepairable DNA damage & yeast health)
- DNA repair defective mutant (radiation sensitive)
- Long-term biocompatibility & other tests:
- Long-term medium & metabolic dye storage (<u>completed 2-year test</u>)
- Long-term yeast desiccation (completed 2-year test) & desiccation method selection (completed)
- Long-term biocompatibility in fluidic cards (completed 2-year test)
- Card activation sequence: desiccation  $\rightarrow$  stasis  $\rightarrow$  rehydration  $\rightarrow$  metabolic activity & growth
- Sterilization method selection (autoclaving vs. e-beam vs. EtO) (completed)
- Optical data processing & optimization
- Spacecraft EDU assembly, vibration & TVPM tests (completed)
- FlatSat optical calibration tests (completed)
- <u>Completed EVT</u> & currently assembling protoflight & flight units (TRL6)

#### Ongoing radiation experiments:

- Cells irradiated in suspension & in desiccated state (with & without shielding)
- Strain sensitivity via optical readings in microplate readers or GSE optical units
- <u>Sources</u>: gamma (ARC); protons & SPE simulations (Loma Linda); HZE ions & GCR simulation (NSRL)







#### **BioSentinel Payload – BioSensor & LET Spectrometer**



EDU5 BioSensor being reworked



SN01 – Sterile BioSensor During Assembly & Integration



**BioSensor & LET Spectrometer** Integrated will be used in Spacecraft **Protoflight Build** 



# **BioSentinel Payload Experiment Verification Test**





EDU5 in incubator for EVT start



BioSensor Team placing EDU in incubator 2-Ca Interplanetary Small Satellite Conference April 29, 2019

EVT successfully demonstrated a 6-month BioSensor experiment compressed into a 1-month test (actually 2-months due to shutdown). All 18-cards were filled and science data shows growth of both strains of yeast.



BioSensor Team executing 1 of 9; 2-Card experiments



#### **BioSentinel Spacecraft Flight Hardware Deliveries**



Hand-Off of BioSentinel Flight Iris Transponder @ JPL



BioSentinel Iris Flight Unit including SSPA & LNA



Flight C&DH Boards: Single Board Computer (SBC) [Left] & Interface eXpansion Card (IXC) [Right] (Provided by SDL)



4-Panel Gimbaled Solar Array Ready to Ship (Provided by MMA)

# ADCS Module Assembly - Procedure XM044

AS



K Simulator for Fit Check



#### Thermal TVPM Data Analysis



Temperature [C], Time = 5130 sec



## Mechanical Fit Check Progress – Day 2 (11/13/18)

Front View



**Back View** 





## Mechanical Fit Check Progress – Day 3 (11/14/18)

Front View



**Back View** 





## Mechanical Fit Check Progress – Day 6 (11/19/18)

Front - Bottom View



**Back View** 





# Mechanical Fit Check Progress – Day 9 (11/26/18)

Front - Bottom View



**Back View** 





## Mechanical Fit Check Progress – Day 11 (11/28/18)

#### Front - Bottom View







# Mechanical Fit Check Progress – Day 12 (11/29/18)

Solar Panel Deployed

Front - Bottom View

AS







#### Mechanical Fit Check Progress – Day 12 (11/29/18)



Front - Bottom View Solar Panel Stowed (3 of 4) Back View







#### **BioSentinel Flight Solar Arrays**





Solar Array Support Fixture



Solar Array Grapple Frame Assembly



Solar Array Gimbal Testing







#### Questions



**BioSentinel Leaving Earth** 





- Mission Management Dawn McIntosh, Ben Bradley, Zion Young, Mario Perez, Tara Samuels, Vas Manolescu, Dan Rowan, Mark Shirley Matt D'Ortenzio, Mike Henchske, Nelson Abiva, Bob Hanel, James Chartres, Elwood Agasid
- Science Sharmila Bhattacharya, Sergio Santa Maria, Lauren Liddell, Sofia Tieze, Diana Gentry, Macarena Parra, Tore Straume, C. Mark Ott, Sarah Castro, Greg Nelson, Troy Harkness, Roger Brent
- Payload Tom Luzod, Jeff Homan, Rich Bielawski, Mike Padgen, Lance Ellingson, Dzung Huang, Tony Ricco, Travis Boone, Aaron Schooley, Dayne Kemp, Eric Tapio, Scott Wheeler, Susan Gavalas, Edward Semones
- **Spacecraft and Bus** Stephen Walker, Luke Murchison, Terry Stevenson, Jesse Fusco, Philip Shih, Craig Pires, Shang Wu, Abe Rademacher, Josh Benton, Nathan Benz, Rudy DeRosse, Matt Knudson, Matthew Sorgenfrei, Hugo Sanchez

#### Affiliations

NASA Ames, NASA JSC - RadWorks, Loma Linda University Medical Center (LLUMC), Univ. Saskatchewan

#### Support

NASA Human Exploration and Operations Mission Directorate (HEOMD); Advanced Exploration Systems Division – Jitendra Joshi - Program Executive.



#### Acronyms



ADCS-Attitude Determination Control System AES – Advanced Exploration System BNL - Brookhaven National Laboratory **CR** – Continuing Resolution C&DH – Command & Data Handling dPM – Deputy Project Manager EDU – Engineering Development Unit EM-1 – Exploration Mission One **EPS – Electrical Power System** ER&T-Exploration Reasearch & Technology ESS - Environmental Stress Screening **EVT - Experiment Verification Test** GSDO - Ground Systems Development & Operations HR – Hazard Report IRB - Interface Requirements Baseline (ISS) **ISS** – International Space Station LET - Linear Energy Transfer

LGA – Low Gain Antenna LLUMC – Loma Linda Univ Medical Center LOP-G Lunar Orbiting Platform - Gateway LRD - Launch Readiness Date LSR – Lightsey Space Research MGA – Medium Gain Antenna NET – No Earlier Than ROM – Rough Order of Magnitude SABL – Space Automated Biproduct Laboratory SBC - Single Board Computer SDL- Space Dynamics Lab (C&DH Boards) SDP-Safety Data Package SLS – Space Launch System SPE - Solar Particle Event SSTP – Small Satellite Technology Program **TVPM – Thermal Vacuum Power Management** XACT – ADCS Subsystem



# **BioSentinel – I&T Accomplishments & Activities**

- Remove BioSentinel Payload EDU
  - Operate 1 bank of Payload, take apart and inspect
- Reassemble with new BioSentinel Payload EDU and functional tests
  - Some anomalies required rework, others judged to be acceptable for EDU TVPM
- Spacecraft Engineering Development Unit (EDU) Thermal Vacuum Power Management (TVPM) Test
  - TVPM plan is to run the timeline (below), 24/7 test planned for 14 days.
  - As delays pushed us closer to the Holidays we ran the Pump Down (PD) through 1<sup>st</sup> Thermal Cycle (C1) and then Vented (V) leaving the chamber powered off and at ambient conditions
    - This occurred 12/15 thru 12/20/18
  - After a Team quorum returned from the Holidays the chamber was pumped down again, the final 3 thermal cycles were run and chamber vented.
    - This occurred 1/3 thru 1/8/18
  - Spacecraft EDU returned to clean room and major subsystems disassembled and for inspection and some additional anomaly testing

