

New Avenues for Planetary Science Using On-Orbit CubeSat Centrifuges

Erik Asphaug¹, Jekan Thangavelautham² and the AOSAT Team ¹Lunar and Planetary Laboratory, ²Space and Terrestrial Robotic Exploration Laboratory University of Arizona

Motivation

Asteroid exploration is tied to origin of Earth, origin of solar-system and origin pre-organics.

Surface Exploration

• Extremely challenging due to milligravity environment, unexplored surface physics

Philae/Rosetta (ESA)

NEO Exploration (NASA)

Science Motivation

AOSAT 1

Launch 2019, NASA CLSI

Milligravity Environments

Practical Questions

- What happens to low gravity regolith during landing, mining or excavation?
- Can a spacecraft be anchored to embedded rocks, or will they pull free?
- Are landforms stable, or will exploration and mining activities disturb them catastrophically?

Need for Controlled Env. / Persistent Link

• Microgravity geophysics investigations are short duration (drop towers, parabolic flights), noisy, or expensive and human-tended platforms.

Need for Controlled Env. / Persistent Link

- Need for <u>controlled environments for scaled</u> <u>experiments under milligravity (asteroid, slow</u> <u>centrifuge) conditions</u>
 - Repeatable, incremental experiments
 - Extremely low noise (no vibrtions)
 - Rapid turnaround for hypothesis testing and for reducing risk of flagship/human missions

AOSAT 1

AOSAT 1 Eng Model of Science Payload

Borosilicate Gasketing

AOSAT 1 Conops

Detumble

Release Regolith

Free Float Regolith .

Vibrate Regolith

Detumble Simulations

Angular velocities of the body Wrt Orbit frame

14

AOSAT 2 Prototype: 6U Design

AOSAT 2 Prototype: 6U Design

Upgrades:

- More power
- S-band communications
- Larger lab/more actuators

Scaling-up for Future Missions

- Can deploy an array of small centrifuges for ongoing lowcost experiments
 - Deploy, retrieve, analyze, re-deploy

Scaling-up for Future Missions

- A large on-orbit centrifuge based on existing service vehicles can be fitted as proving ground to simulate:
 - Asteroids, Comets, Phobos-Deimos: << 1 rpm
 - Moon, Mars: ~10 rpm

Conclusions

BASIC SCIENCE QUESTIONS

- How much gravity is enough, or just right, for a given artificial or natural process?
- How does a small but constant g influence the resting configuration of rocks and airless soils?
- How does presence of small gravity affect the operations of anchors, probes, and excavators?
- Is a small but constant gravity of substantial benefit to humans, crop growth, and medicine?
- In what ways is milligravity an impediment, and in what ways beneficial, to hazardous asteroid mitigation and mining?
- How will we process asteroid regolith in space?

Conclusions

TRL-RAISING FACILITY:

Planetary science *instruments*, scaled or full size *landers*, *spacesuits*, and even *astronauts* can be trained or tested in a milligravity centrifuge laboratory ahead of deep space missions to real asteroids.

The Team

Students and Postdocs Involvement

AOSAT I – (2014-2017)				
Undergraduates	32			
Masters Students	15			
PhD Students	3			
Postdocs	2			
Total	52			

Year	2014	2015	2016	2017
Undergraduates	10	8	8	8
Graduates	6	8	9	9
Postdoc	1	2	2	2
Total	17	17	18	18