

Progress Update on the Morehead State University Ground System Development for Interplanetary CubeSat Missions

Interplanetary Small Satellite Conference May 8, 2017

> Ben Malphrus, Jeff Kruth (MSU) Tim Pham, Jay Wyatt, (JPL)

In Partnership with Jet Propulsion Laboratory California Institute of Technology

A New Era of Planetary Exploration with Small Satellite Platforms

- History was Made on Saturday with the Launch of MarCO A and B
- EM-1 will Launch 13 Interplanetary CubeSats
- Numerous Interplanetary SmallSat Missions are in Planning (PSDS3 Studies, Others at NASA Centers and in the Private Sector)
- All Need Deep Space Communications and Ranging Support
- DSN is Heavily Subscribed
- Idea Emerged to Utilize Large Aperture non-NASA Assets*
- This Project Represents the Prototype Experiment

* Suggested by Rob Staehle JPL in 2014

21 Meter Space Tracking Antenna at Morehead State University

Specifications by MSU faculty with NASA assistance
Dual Purpose Instrument

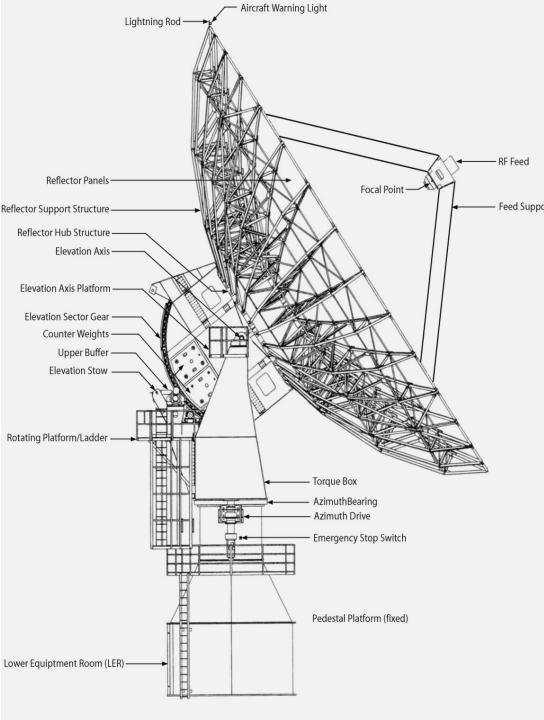
•Ground Station for Smallsats

Radio Telescope for Astronomy Research

Built and Installed by VertexRSI (General Dynamics)

• Operational in 2006

Program Funded by AES in 2016 to Upgrade the 21 m Toward DSN Compatibility


MOREHEAD STATE UNIVERSITY

The Morehead State University Ground Station

- Quiet RFI Environment in Eastern Kentucky (Southeastern US)
- 21 m Ground Station (few in the US large enough for DSN Work)
- Staff Experienced in Mission Operations
- Experienced RF and Telecom Engineers and Scientists
- Talented, Intrepid Students

21 M Operations

- Satellite Ground Station for Morehead State SmallSat Missions and Others
- **JPL ASTERIA Ground Station**
- Radio Telescope Mode for Research in Astrophysics
- Test-Bed for Experimental Communication Systems

21 M Overview

Parameter	Measured Values		
Axis Slew Velocity			
Azimuth	> 3.0 °/sec minimum		
s Elevation	> 1.6 °/sec minimum		
Polarization	> 0.7 °/sec minimum		
Axis Acceleration			
Azimuth	1.0 °/sec ²		
Elevation	0.6 °/sec ²		
Travel Range			
Azimuth	± 269.8°		
Elevation	1.0° to 90.3°		
Polarization Range	± 90°		
Pointing Accuracy	0.005° RMS		
Tracking Accuracy	0.0004° RMS		
Aperture Efficiency, η (L/Ku)	0.653/0.563		
Surface Tolerance @ 35 mph wind	< 0.020" RMS		

Interplanetary SmallSat Ground Ops: Morehead State 21 M **Ground Station-Current Operational State**

21 M Ground Station

ISEE-3 Carrier During Lunar Fly-by Sept 2014

•Fully Operational, Full-Motion, 21 M Antenna •Operational Experience: LRO, ISEE-3, Planet Labs, KySpace, JPL ASTERIA

- •High Gain, Pointing and Tracking Accuracy
- •Station is ideal for Inner Solar System Experiments
- •Full Remote Control of All Systems
- UHF and S-Band Uplink and Downlink
- NASA NEN Compatible
- Software-Defined TT&C Processor (SoftFEP) and High Data Rate Digitizer for Experimental Missions
- Extensive use of Student Operators (STEM Engagement)

Student Operators in the MSU 21 M LER

Student Operators in the MSU Mission Ops Center

MSU 21 Meter Current RF Capabilities

Radio Band	Frequency	Gain	Uses of Band
	Range		
UHF	400-480 MHz	30 dBi	Satellite Telecom
S-Band	2.2-2.5 GHz	52.8 dBi	Both Satellite Telecom and
			Radio Astronomy
Ku-Band	11.2-12.7 GHz	65.50 dBi	Primarily Satellite Telecom

AES Program: 21 m DSN Station (DSS-17)

Project Description and Objectives

Demonstrate a cost-effective process for expanding DSN capabilities by utilizing non-NASA assets to provide communication and navigation services to small spacecraft missions to the Moon and inner solar system, thereby enabling interplanetary research with small spacecraft platforms.

Technical Approach

- Develop and implement a strategy to transfer Deep Space Network (DSN) processes and protocols to the MSU 21 m antenna system to enable integration into the DSN as an auxiliary station to support small spacecraft missions.
- Implement deep space communications, tracking and navigation techniques as well as adoption of CCSDS standards.
- Implement systems upgrades, conduct tests/demonstrations, and transition to an operational capability.

Benefits

- Serves as a test-case for other non-NASA ground stations to provide auxiliary deep space navigation and tracking support for small spacecraft missions.
- Develops an operational capability to support EM-1 CubeSat missions in the 2018- 2019 timeframe
- Transparent to Missions Being Supported

Targets

Full DSN Compatibility Scheduled by DSN Support CCSDS-SLE DSN Tracking and Ranging Support Lunar, NEA, Lagrange Point Missions at 64-256 kbps

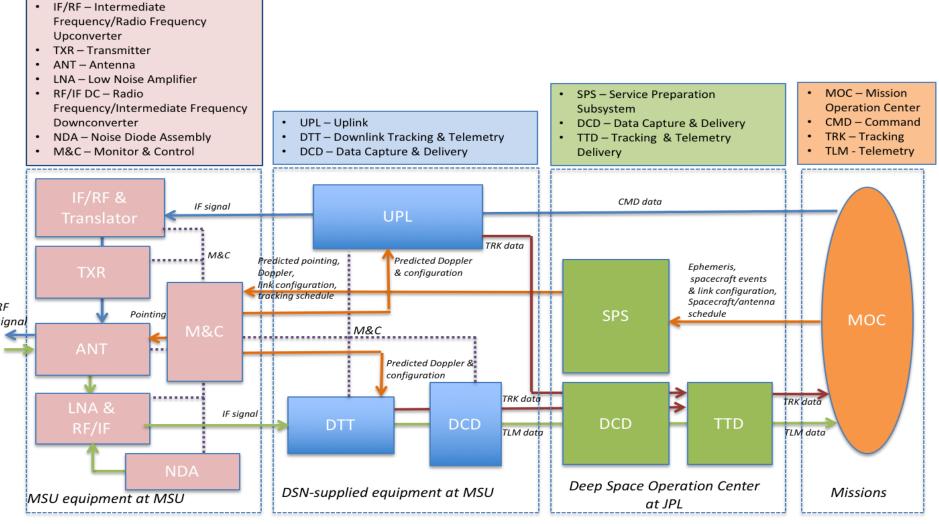
Enabling Interplanetary Smallsat Ground Support- Toward DSN Compatibility

Primary Tasks

- Design, Develop and Implement Single-channel, Customized "Lite" Versions of DSN Equipment:
 - DTT- Downlink, Tracking and Telemetry
 - DCD- Data Capture and Delivery
 - UPL (USG- Uplink Signal Generator and UPA-Uplink Processing Assembly)
- Develop a 21 m version of NMC
- Implement 3 KW Power Amplifier
- Implement Hydrogen MASER
- Design and Fabricate Cryogenic X-Band Feed
- Modify IF Stages
- IT and Physical Security Upgraded
- Implement DSN Ranging Techniques
- Calibrate, Test and Validate System and all Subsystems
- Perform a Series of Downlink, Uplink and Ranging Demonstrations
- Commission as an Affiliated DSN station
- Add DSS-17 to DSN Scheduling
- Support Operational Readiness Review in Advance of EM-1

Enabling Interplanetary Smallsat Ground Support- Toward DSN Compatibility

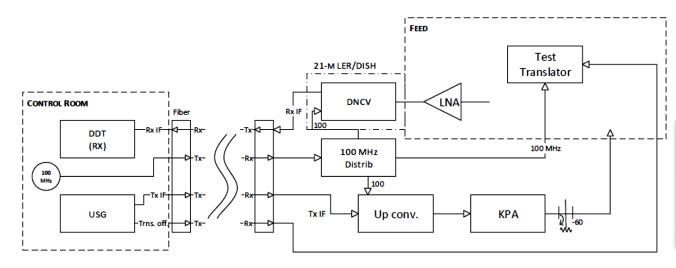
Incremental Delivery and Testing

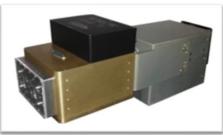

Delivery Increment	Test Focus					
DSN-provided Uplink, Downlink and Data capture & delivery	 a. Generation of command data b. Generation and correlation of ranging signal, for both sequential and pseudo-noise ranging c. Extraction of telemetry data d. Data transfer between the uplink and downlink equipment and the Data Capture & Delivery 					
Connection to NASA Mission Backbone Network	IP connection (after IT Security scan) Data delivery between the MSU DCD and JPL DCD (verifying all routing permissions in the firewall setting, both for MSU & JPL) Simulated data flow from DTT (at MSU) to TTD (at JPL)					
Installation of downlink RF equipment at the antenna	Extraction of telemetry and delivery to JPL					
Installation of uplink RF equipment and Transmitter at the antenna	 a. Generation of command data with Transmitter in the loop, with connection from SLE user to MSU Uplink equipment b. Correlation of ranging signal, including the Transmitter and LNA components c. Radiometric (Doppler/Ranging) data delivery to JPL 					

Jet Propulsion Laboratory California Institute of Technology

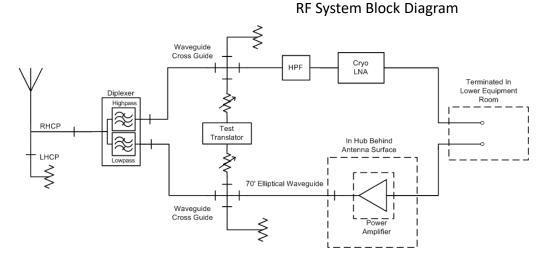
New System Architecture Required

DSS-17 System Architecture


Jet Propulsion Laboratory


California Institute of Technology

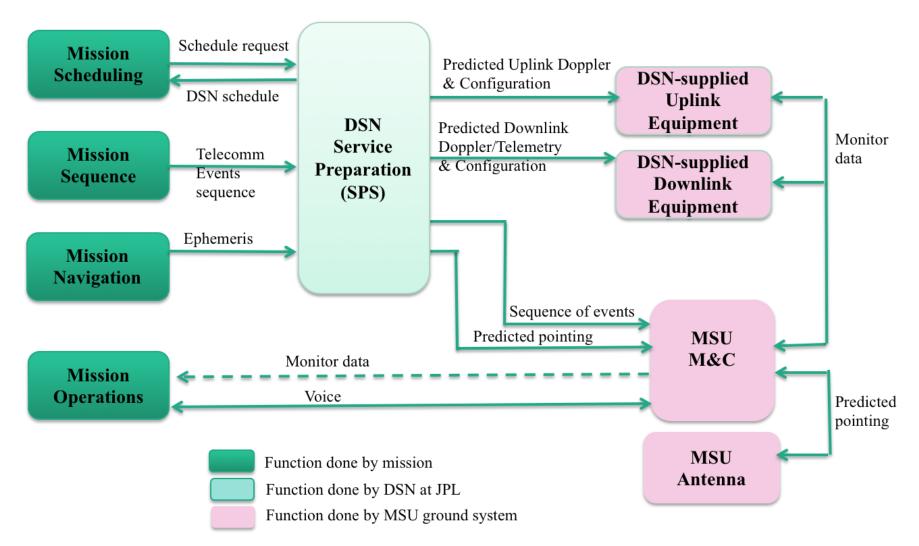
DSS-17 RF System and X-Band Feed




New X-Band Feed Required with Cryogenic LNA and High Power TX Capability

Cryogenic X-Band LNA <20K

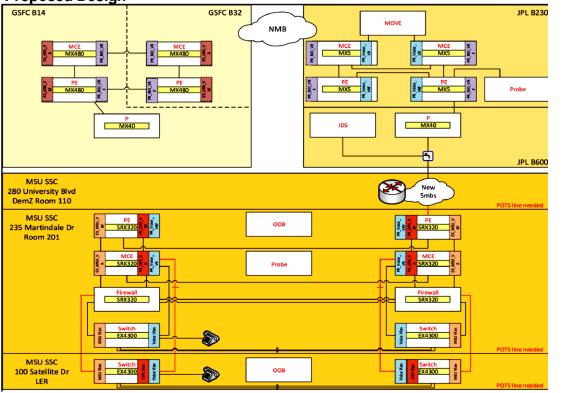
X-Band Feed Diagram



Jet Propulsion Laboratory California Institute of Technology

Service Management Data Flow

Jet Propulsion Laboratory California Institute of Technology


IT Security and NMB Connection

IT Security and Network Connection Required

- LAN Independent of University Network
- Architecture Designed with JPL and CSO
- Behind NASA Firewall
- Designed by NASA JPL and CSO
- Direct Connection to the NASA NMB

Proposed Design

 NETWORK TO JPL	
DSN Campus Network (IONET)	

Project Status and Remaining Tasks

Primary Tasks Complete/In Process

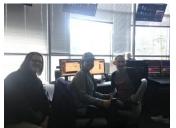
- DSN Designation Assigned- DSS-17
- System Architecture Design Complete
- DSN Equipment Installed and In Testing
- Hydrogen MASER in Operation (on semi-permanent Loan from MIT)
- X-Band Feed Designed and Fabricated
- IF Systems Complete
- Antenna Control Systems Tested
- IT Security Scans Being Conducted
- Initial Staff and Student Training Conducted

Major Tasks Remaining

- Implement and Test HPA
- Transfer Tracking and Ranging Processes
- Complete Staff and Student Training
- Implement Monitor Control
- Conduct Series of Validation Demonstrations
- Commissioning
- EM-1 ORR

Purple Glow from the Hyperfine Transition of Atomic Hydrogen

Hydrogen MASER


		Measured	
Duration	Detector	Allan	
(s)	reading	Deviation	Required
1	4.50E-013	3.18198E-13	3.30E-13
10	6.00E-014	4.24264E-14	1.00E-13
100	2.00E-014	1.41421E-14	3.30E-14

DSN Equipment at DSS-17

21 m Station Control System

Morehead State Student Operators Gaining Invaluable Experience during JPL ASTERIA mission

. . . .

Jet Propulsion Laboratory California Institute of Technology

Expected 21m Performance

Performance Measure	Pre-Upgrade	Post-Upgrade	
X-Band Frequency Range	7.0 – 7.8 GHz	7.0 – 8.5 GHz	
LNA Temperature	70 K	< 20 K	
System Noise Temperature	215 K	<100 K	
Antenna Gain	62 dBi (@7.7 GHz)	62.7 dBi (@8.4 GHz)	
System Noise Spectral Density	-175 dBm/Hz	<-178 dBm/Hz	
G/T at 5° Elevation	37.5 dB/K	40.4 dB/K	
Time Standard	GPS (40 ns)	Hydrogen maser (1 ns/day)	
EIRP	N/A	93.7 dBW	
HPBW	0.124 deg	0.115 deg	
SLE Compliance	N/A	Yes	
CCSDS Compliance	N/A	Yes	
Forward Error Coding	Reed Solomon/Convolutional	Reed Solomon/Convolutional, Turbo, Low Density Parity Check	
Radiometric	Angle, Doppler	Angle, Doppler, Ranging	

Planned Testing and Validation Demonstrations

MarCO

- Downlink Using X-Band Feed and DSN Equipment
- Downlink Using X-Band Feed and MarCO Receiver System
- OMSPA Using X-Band Feed and Custom SDR-based Multiple Receiver System
- UHF Uplink Simulating Insight for MarCO Testing

OSIRIS Rex and MAVEN

- Uplink Testing
- Downlink Testing
- Ranging Tests

Mission	Uplink Margin, dB	Downlink Margin, dB
Osiris Rex	20.9	5.8
Maven	17.3	5.5

LRO

- Tracking Precision Testing
- SNR and CNR Measurements

Lunar IceCube

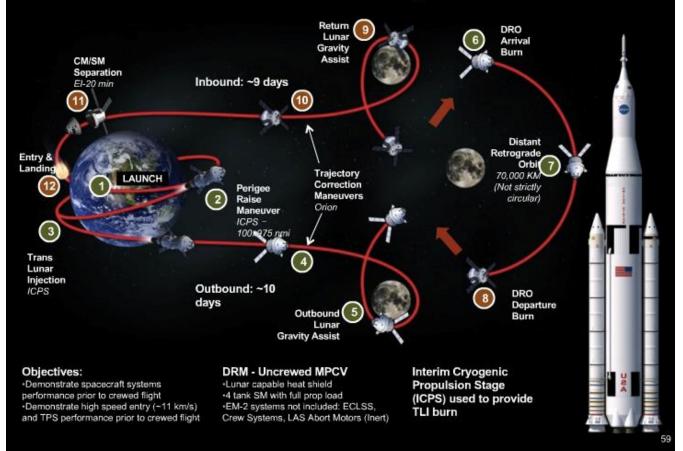
DTN Demonstration

DSS-17 Next Steps

Remaining Critical Milestones

Downlink Demo	NASA NMB Connection	Downlink Demos	Uplink Demo	Ranging Demo	ORR	Operational	EM-1 Mission Ops	Mission Duration	Future Interplanetary Smallsats
5/5/2018	06/30/2018	2Q 2018	3Q 2018	4Q 2018	Q3 2019	Q4 2019	Q4 2019	EM-1 CubeSats Duration	Beyond EM-1

On Target for Operational Readiness for EM-1



Prepared to Provide Support for NASA EM-1 CubeSats

Lunar IceCube Lunar Flashlight NEA Scout Biosentinel

LunaH- Map

EM-1: Uncrewed Distant Retrograde Orbit 2018

2 spacecraft

same beam

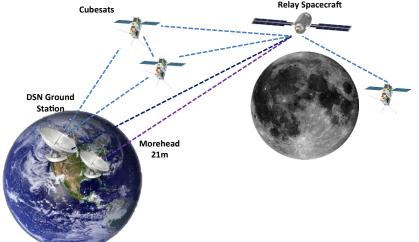
schedule to

formally

antenna.

share

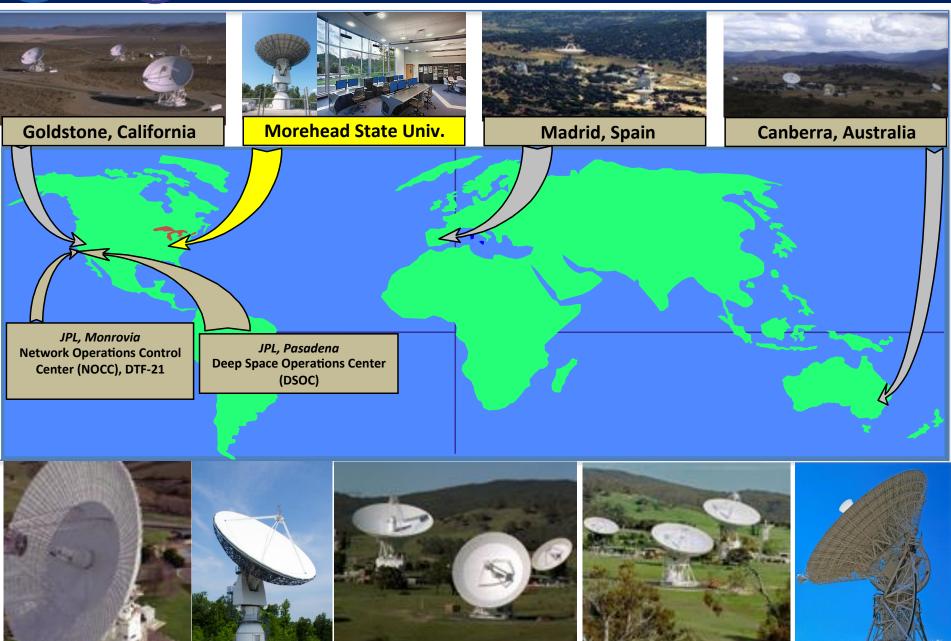
that will be in


Future of DSS-17

Possible Extensions and Adaptations

- Multiple Spacecraft per Aperture (MSPA) ٠ and Opportunistic MSPA (OMSPA)
- Delay/Disruption Tolerant Networking (DTN)
- UHF Uplink/X-band Downlink for MarCO ٠ Experiment

Support for Space Networking


Traditional MSPA Opportunistic MSPA "N" smallsats opportunistically transmit open loop while in beam of a "host' spacecraft. "Host" spacecraft has a formally Each spacecraft scheduled downlink to a downlinks to a receiver. separate receiver. Currently, 2 receivers per Smallsat open-loop antenna, allowing 2-MSPA. transmissions are DSN moving to 4-MSPA captured on a wideband capability on selected recorder. antennas.

DSS-17 Affiliated Station

