

Water-enabled Propulsion Technologies for Interplanetary Travel and Surface Exploration and Prospecting

Jorge Martinez Dominguez Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory Aerospace and Mechanical Engineering Department University of Arizona

Outline

- Introduction
- Motivation
- Solar Thermal Steam Propulsion
- System Overview
- Analysis
- Performance
- Conclusion

Introduction

Why Space Exploration?

- Human need to understand where we came from
- Answer questions about habitability and astrobiology

Space Economy

- Activities and use of resources that benefits human beings
- Two factor for a sustainable space exploration
 - The use of off-world resources during the mission (ISRU)
 - The use of small, cheaper and expendable spacecrafts and robots

ISRU

In-situ resources to sustain:

- Long Missions
- Lower the cost
- Routine movement
- Economic viability
- Why water ?
 - Multiple sources in the inner solar system.

Source: NASA

Small Satellites

- Reduced launch costs
- Reduced development times
- Easily manufactured
- Swarms of microsatellites to replace single large
- Quicker response when replacing a damaged satellite
- Workhorse for interplanetary travel

Small Satellites for Interplanetary Travel

- High Isp solutions have been developed
- Low thrust requires long waiting time, precise maneuvering and hard to achieve capture orbits
- Solar Thermal Propulsion
 represents a medium-range solution

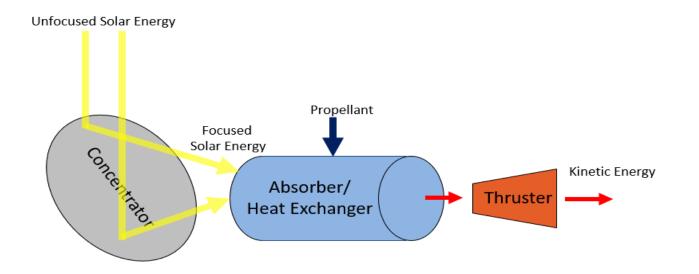
Propulsion Type	Thrust	I _{sp} (8)
Hall/Ion	0.4 – 20 mN	300 - 3700
FEEP/Colloid	$0.1 \mu N - 1.5 \ mN$	450 - 9000
Electromagnetic	0.03 – 2 mN	200 - 4000
Electrothermal	\leq 220 mN	50 - 250
Cold Gas	0.5 – 3 N	40 - 80
Monopropellant	$0.1 \mu N - 1.5 N$	100 - 200
Bipropellant	$0.1 \mu N - 45 N$	100 - 320
Decomposing Solid	No number available	230
Laser Micro. (ablation)	0.1µN	100 - 300
Laser Micro. (ignition)	1 – 10 mN	37 - 100
Laser Plasma	0.1 – 1 mN	500 - 1000
Hollow Cathode	0.1μN – 10 mN	50 - 1200
Solar Thermal (Concentrators)	56 mN – 1 N	200 - 1100
Solar Thermal (Heat Exchanger-water)	32 – 33 mN	317 - 332
Solar Thermal (Heat Exchanger-hydrogen)	97 – 101 mN	951 – 995
Solar Thermal (Heat Exchanger-ammonia)	33 – 35 mN	326 - 341
Solar Thermal (Heat Exchanger-hydrazine)	24 – 25 mN	238 - 249

Need for Multifunctional Materials to Support Long Duration Missions

- Adopting a common, high-performance yet green propulsion solution has major benefits
- Maximal multi-functionality from few materials.
- The resource can be readily replenished
- Water is an excellent candidate
 - Propulsion, power, thermal control, radiation shielding, life-support
 - Compelling choice for fuel

Objective

- Detect market gap and improve capabilities
 - ISRU
 - Compact, small technology
- Apply these concepts to refine previous model
 - Interplanetary travel: STP
- Propulsion systems modelling and performance analysis

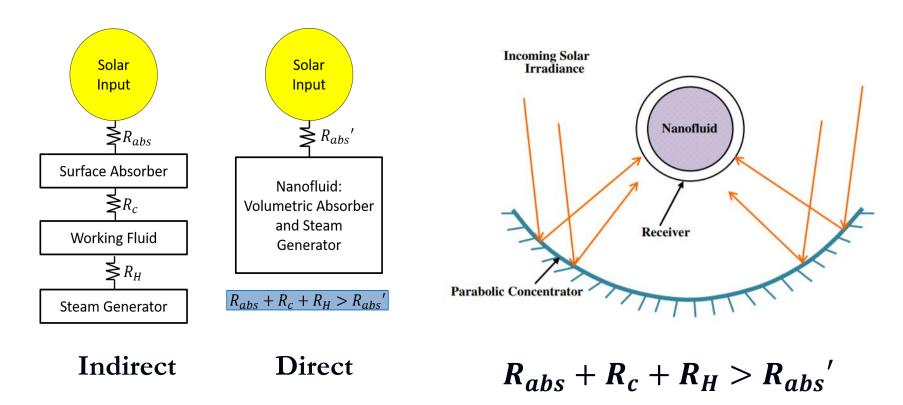


Approach

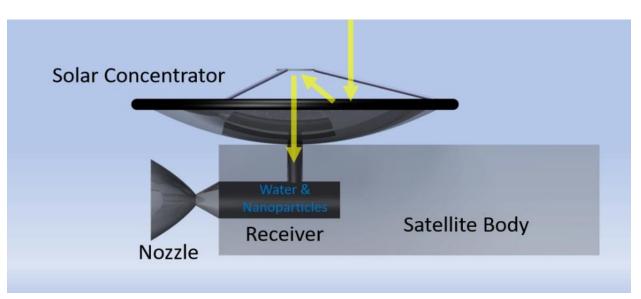
- Analytical approach
- Computer simulations
 - Matlab
 - ANSYS
- Analyze performance

Solar Thermal Propulsion (STP)

- Solar Concentrator
- Volumetric Receiver
- Convergent-Divergent Nozzle

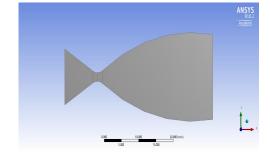

• Parabolic Dish Concentrator

- High Concentration Ratio $C = \frac{A_c}{A_r}$
- Rigid and Inflatable options
- Design:
 - 1) Select a desired C
 - 2) Select a desired R
 - 3) Compute the focal length necessary



• Solar Receiver

• Solar Receiver



Direct Gain STP Concept

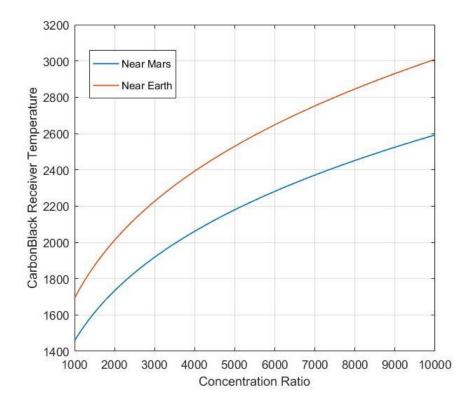
- Volumetric heating
- Thermal Isolation
- Impure water

• Thruster: Operating Conditions

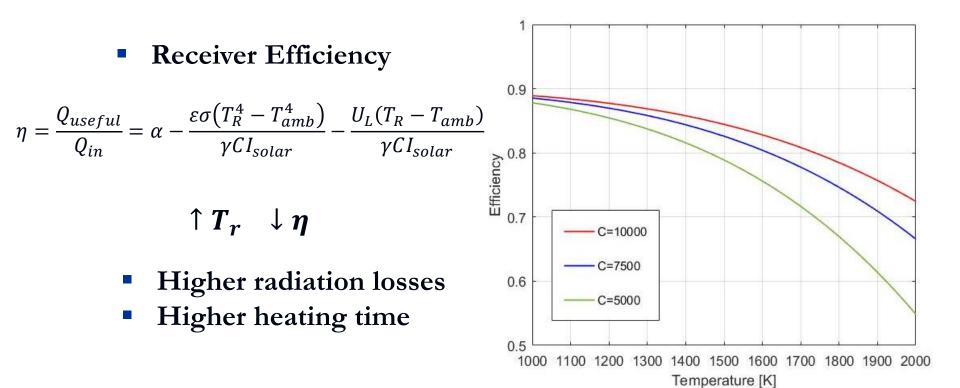
Nozzle Design		
Chamber Temperature (K)	$T_{c} = 2500$	
Chamber Pressure (bar)	$p_c = 6$	
Mass flow rate (g/s)	$\dot{m} = 1$	
Specific Heat Ratio	$\gamma=1.32$	
Expansion Ratio	$\boldsymbol{\epsilon}=100$	
Nozzle Throat Temperature (K)	$T_t = 2145$	
Nozzle Throat Pressure (bar)	$p_t = 3.24$	

Nozzle Geometry		
Hot chamber Diameter (cm)	$D_i = 2$	
Convergence half-angle (mm)	$oldsymbol{ heta}_c = 30^\circ$	
Nozzle Throat Diameter (mm)	$D_t = 1.84$	
Throat exterior Radius (mm)	$R_{ext} = 2.6$	
Divergence half-angle (mm)	$m{ heta}_d=35^\circ$	
Exhaust Diameter (mm)	$D_{e} = 18.4$	
Nozzle Length (mm)	L = 43	

• Carbon-black Receiver

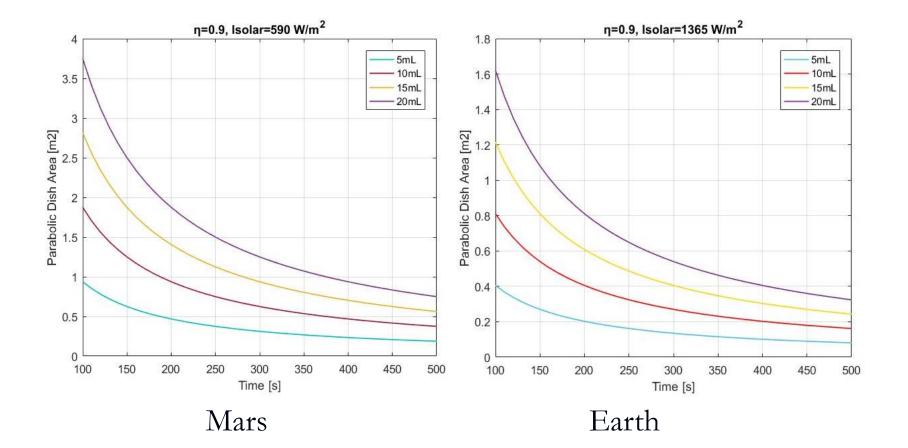

Thermal Equilibrium

$$T_R^4 = \left(\frac{\alpha \gamma C I_{solar}}{\varepsilon \sigma} + T_{amb}^4\right)$$


Source: Surrey Nanosystems

Up to 99% absorptivity

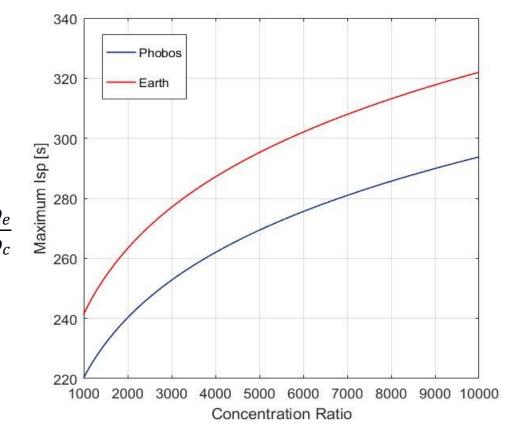
• Carbon-black Receiver


- Steam generation
- How efficiently do the nanoparticles transmit the heat to the water?

$$\eta(t) = \frac{\left(c_{p_w}m_w + c_{p_n}m_n\right)\Delta T + \int_0^t m_s h_{lv}dt + c_{p_s}m_s\Delta T}{\eta_c \int_0^t I_{solar}A_{ab}dt}$$

- Experimental work on low concentration ratios, for gold nanoparticles, show efficiencies $\eta = 0.8 0.9$.
- Further experimentation is needed for carbon nanoparticles and high concentration ratios, but a similar photothermal efficiency is expected.

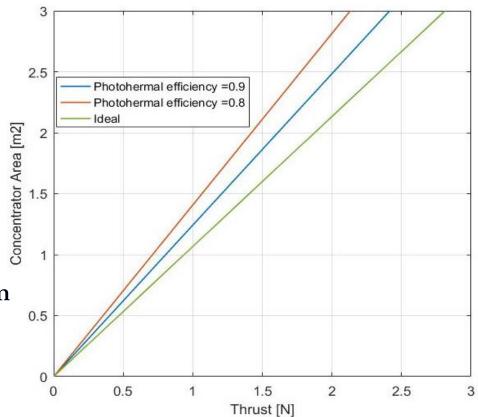
STP: Time Need to Achieve 2500 K



- Specific Impulse
- ANSYS model showed only a 5% difference with the analytical work

$$I_{sp} = \sqrt{\frac{2\gamma}{\gamma - 1} R_g T_c \left(1 - \left(\frac{p_e}{p_c}\right)^{\frac{\gamma - 1}{\gamma}}\right)} + \varepsilon R_g T_c \frac{p_e}{p_c}$$

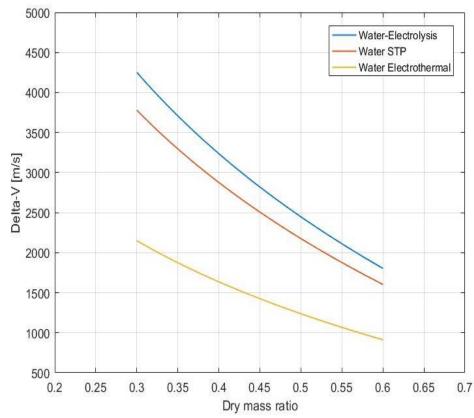
$$I_{sp} = 240 - 320 \text{ s}$$



- Thrust
- The components efficiency allows us to compute the thrust

$$\eta_{opt}\eta_{pt}A_cI_{solar} = \frac{1}{2}Tv_e$$

- $T \sim 1N$ with $1 m^2$ concentrator
- Easily scalable
- The overall efficiency of the system is ~0.7, higher than the ~0.4 of available electrothermal water technologies.



- Delta-v
- Tsiolkovsky rocket equation

 $\Delta v = v_e \ln \frac{m_0}{m_f}$

- Maximum $\Delta v \sim 4$ km/s at a 0.3 dry mass ratio
- It approaches water electrolysis propulsion systems
- Offer a superior performance than water electrothermal propulsion

- Delta-v
- Tsiolkovsky rocket equation

 $\Delta v = v_e \ln \frac{m_0}{m_f}$

- Maximum Δν ~4 km/s at a 0.3 dry mass ratio
- It approaches water electrolysis propulsion systems
- Offer a superior performance than water electrothermal propulsion

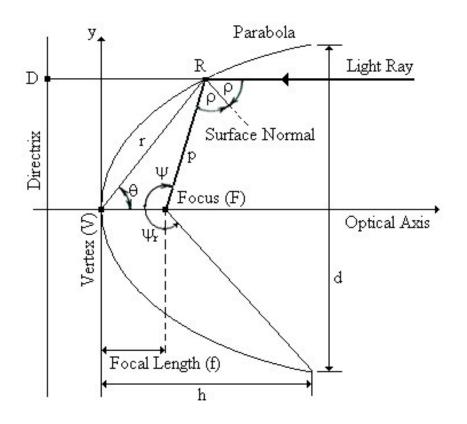
Comparison between Water-based Propulsion Systems

Photovoltaic Electrolysis Propulsion System	<i>I_{sp}</i> = 360	T=3.5 N
Solar Thermal Steam Propulsion	<i>I_{sp}</i> = 320	T = 3.1 N
Electrothermal Water Propulsion	<i>I_{sp}</i> = 182	T = 1.8 N

Conclusion

- Developed a refined Solar Thermal Steam Propulsion concept for spacecraft
- Better performance than water-based electrothermal technologies, and comparable to water electrolysis
 - Major implications
- Delta-v on the 4km/s range required from LEO to Phobos
 - LEO to Earth-Mars transfer 3.6 km/s
 - Aerocapture and aerobraking to Phobos transfer and 0.5 km/s to Phobos surface
- Adapted the technology to power surface vehicles, and a ballistic hop mobility was shown for a quad-engine configuration

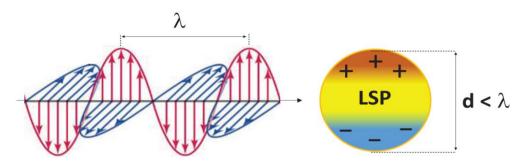
Contributions


- Refine understanding and analysis of STSP
- Develop an scalable model for STSP
- Develop a dynamic model for ballistic hopping of
 - a quad-engine configuration robot

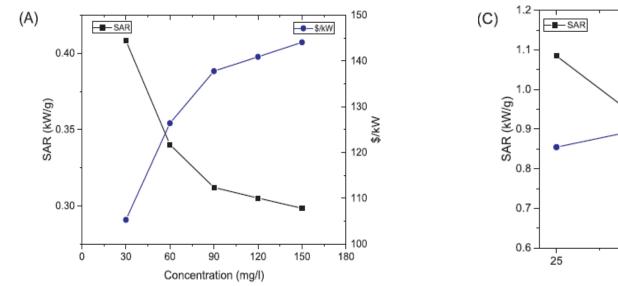
Backup Slides

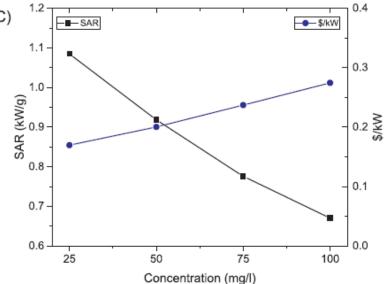
Parabolic Dish Concentrator

OPTICS


$$C_g = \frac{A_c}{A_r} = \frac{\sin^2 \Psi_r \cos^2(\Psi_r + \theta_s + \theta_f)}{\sin^2(\theta_s + \theta_f)}$$

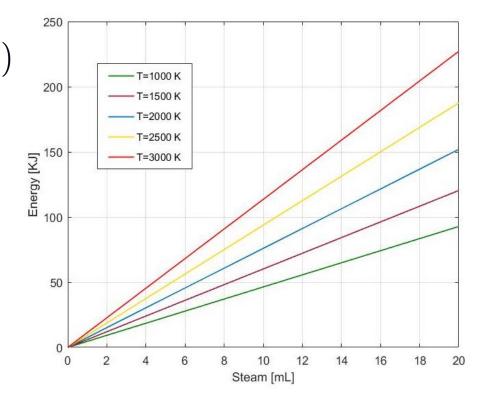
- Ψ_r : Rim angle


- θ_s : Solar half-angle
- θ_f : Angular form error

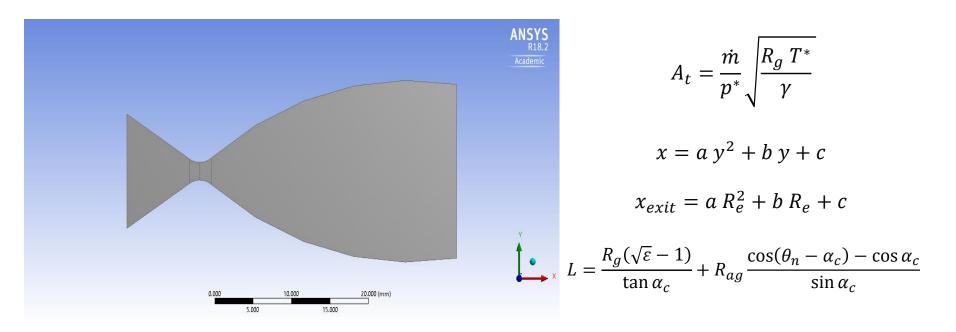


Gold vs Carbon Nanoparticles

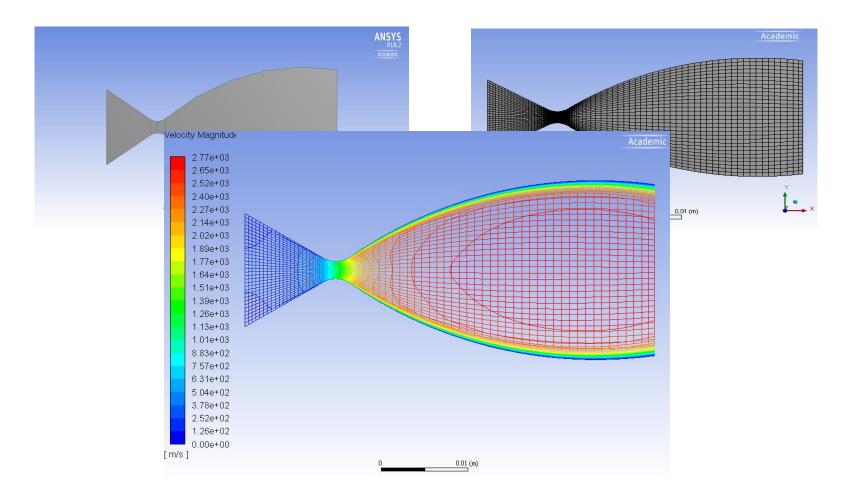
Plasmonic Resonance



- Steam generation
- How much heat is needed to produce the desired superheated steam?


$$E \sim m_w c_{p_w} (T_b - T_0) + m_w h_{lv} + m_w c_{p_s} (T_f - T_b)$$

- Most of the energy is employed in the phase change
- Nanofluids enhanced heat capacity


• Thruster: Bell-shape nozzle

Performance Tested on ANSYS Fluent

ANSYS Fluent Model

