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Introduction

Why Space Exploration?

= Human need to understand where we came from

= Answer questions about habitability and astrobiology

Space Economy

= Activities and use of resources that benefits human beings

= Two factor for a sustainable space exploration
= The use of off-world resources during the mission (ISRU)

= The use of small, cheaper and expendable spacecrafts and robots
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= In-situ resources to sustain:
" Long Missions
= Lower the cost
= Routine movement
" Economic viability
"= Why water ?

" Multiple sources in the
inner solar system.

Source: NASA
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Small Satellites

Reduced launch costs

Reduced development times

Easily manufactured

Swarms of microsatellites to replace single large
Quicker response when replacing a damaged satellite

Workhorse for interplanetary travel



Small Satellites for Interplanetary Travel

= High Isp solutions have

been developed

= Low thrust requires long
waiting time, precise
maneuvering and hard to

achieve capture orbits

= Solar Thermal Propulsion
represents a medium-range

solution

Propulsion Type Thrust L,(s)
Hall/Ton 0.4-20mN 300 -3700
FEEP/Colloid 01N -1.5mN 450 -9000
Electromagnetic 0.03-2mN 200 - 4000
Electrothermal <220 mN 50250
Cold Gas 05-3N 40 - 80
Monopropellant 0.1JuUN-15N 100 -200
Bipropellant 0.1UN -45N 100 - 320
Decomposing Solid No number available 230
Laser Micro. (ablation) 0.1uN 100 - 300
Laser Micro. (ignition) 1-10 mN 37-100
Laser Plasma 0.1-1mN 500 - 1000
Hollow Cathode 0.1N - 10 mN 50-1200
Solar Thermal (Concentrators) 56mN-1N 200-1100
Solar Thermal (Heat Exchanger-water) 32-33mN 317-332
Solar Thermal (Heat Exchanger-hydrogen) 97 -101 mN 951 - 995
Solar Thermal (Heat Exchanger-ammonia) 33-35mN 320-341
Solar Thermal (Heat Exchanger-hydrazine) 24-25mN 238-249

Source: Schatfe et. al. 2009
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Need for Multifunctional Materials to Support
Long Duration Missions

" Adopting a common, high-performance yet green
propulsion solution has major benefits

» Maximal multi-functionality from few materials.
= The resource can be readily replenished
= Water is an excellent candidate

= Propulsion, power, thermal control, radiation
shielding, life-support

» Compelling choice for fuel
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Obijective

e Detect market gap and improve capabilities
= ISRU
= Compact, small technology

o Apply these concepts to refine previous model
= Interplanetary travel: STP

e Propulsion systems modelling and performance

analysis
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Approach

e Analytical approach
e Computer simulations
= Matlab

= ANSYS

e Analyze performance



Solar Thermal Propulsion (STP)

Unfocused Solar Energy

Propellant

\ Focused
Solar Energy

/_

Kinetic Energy
Absorber/
Heat Exchanger

= Solar Concentrator
= Volumetric Receiver
= Convergent-Divergent Nozzle
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STP: System Overview

e Parabolic Dish Concentrator
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= Hioh Concentration Ratio
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Rigid and Inflatable options
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= Design:
1) Select a desired C
2) Select a desired R
3) Compute the focal
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e Solar Receiver

Incoming Solar
Irradiance

Nanofluid

Rabs Rabs’
Surface Absorber
Nanofluid:
%RC Volumetric Absorber
] - and Steam
Working Fluid Generator

D

Steam Generator

|Rabs + Rc + RH > Rabs"

Indirect Direct
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stem Overview

STP: Sy

e Solar Receiver

Solar Concentrator i —

Receiver

Satellite Body
Nozzle

Direct Gain STP Concept
" Volumetric heating

= Thermal Isolation

* Impure water
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STP: System Overview

e Thruster: Operating Conditions
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Nozzle Design Nozzle Geometry

Hot chamber Diameter (cm)
Convergence half-angle (mm)
Nozzle Throat Diameter (mm)
Throat exterior Radius (mm)
Divergence half-angle (mm)

Exhaust Diameter (mm)

Nozzle Length (mm)
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e Carbon-black Receiver

Thermal EqUilibrium 3200
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Near Mars
Near Earth
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STP: Analysis

e Carbon-black Receiver

= Receiver Efficiency

0.9

— M — q — SO-(T;; B Tgmb) _ UL(TR - Tamb)
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O
i
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T Tr 4 n —— C=10000
. . . ——C=7500
" Higher radiation losses 06
C=5000

= Higher heating time
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STP: Analysis

Steam generation
How efficiently do the nanoparticles transmit the heat to the water?

t
(prmw + cpnmn) AT + [, mghy,dt + cp MsAT

t
Ne fo IsolarAabdt

n() =

Experimental work on low concentration ratios, for gold nanoparticles,
show efficienciesn = 0.8 — 0.9.

Further experimentation is needed for carbon nanoparticles and high
concentration ratios, but a similar photothermal efficiency is expected.



STP: Time Need to Achieve 2500 K

n=0.9, Isolar=590 W/m?>
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STP: Performance

e Specific Impulse

ANSYS model showed only a
5% difference with the
analytical work

r-1
2y Pe Y 4
= ngTC 1-— (_e) + ERgTC—e
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STP: Performance
e Thrust

" The components efficiency 3
allows us to compute the thrust

25|

——— Photohermal efficiency =0.9
——— Photohermal efficiency =0.8
- ldeal

1
7701tat77ptAcIsolar = E Tv,

N
T

= T~1N with 1 m? concentrator

= Easily scalable

Concentrator Area [m2]
- o

" The overall efficiency of the system
is ~0.7, higher than the ~0.4 of i
available electrothermal water

technologies. 0 0.5 1 15 2 25 3
Thrust [N]



STP: Performance

Delta-v

Tsiolkovsky rocket equation

mg
Av =v,In—
myg
Maximum Av ~4 km/s at a 0.3 dry
mass ratio

It approaches water electrolysis
propulsion systems

Offer a superior performance than
water electrothermal propulsion
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STP: Performance

e Delta-v

= Tsiolkovsky rocket equation

Comparison between Water-based Propulsion Systems

my
Av = v, In—
my
Photovoltaic Electrolysis I.. =360 T=35N
. Sp - - '
" Maximum AV ~4 km/s at a 0.3 dry Tl Sy
mass ratio
= It approaches water electrolysis Solar Thermal Steam [ =320 T=31N
(] Sp - B .
ropulsion systems Propulsion
p

= Offer a superior performance than

. Electrothermal Water _ _
water electrothermal propulsion ey = s | = L

Propulsion




Conclusion

Developed a refined Solar Thermal Steam Propulsion concept for

spacecraft

Better performance than water-based electrothermal technologies,

and comparable to water electrolysis
" Major implications

Delta-v on the 4km/s range required from LEO to Phobos

= LEO to Earth-Mars transfer 3.6 km/s

" Aecrocapture and aerobraking to Phobos transfer and 0.5 km/s to Phobos surface

Adapted the technology to power surface vehicles, and a ballistic hop

mobility was shown for a quad-engine configuration
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Contributions

" Refine understanding and analysis of STSP
* Develop an scalable model for STSP

"= Develop a dynamic model for ballistic hopping of

a quad-engine configuration robot
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STP: System Overview
Parabolic Dish Concentrator

Va Parabola

s OPTICS
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STP: Analysis

e Steam generation

* How much heat is needed to produce the desired superheated steam?

250

E~ mwch(Tb —To) + my, hyy, + My, Cp (T; — Tb) —
200 ——T=1500 K
—— T=2000 K
T=2500 K
. 510 ——T=3000K
" Most of the energy is employed =
in the phase change .
=" Nanofluids enhanced heat
capacity -
0 2 4 6 8 10 12 14 16 18 20

Steam [mL]
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