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Motivation

Geo-history Security/Deflection ISRU

Asteroid exploration is tied to planetary science, 

security, space economy.
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Motivation

⚫ 2 million asteroids estimated in 

the main asteroid belt.

⚫ 17,000 asteroids found near 

earth.

⚫ They hold valuable resources 

such as water, carbon and rare 

metals that may one day support 

a spacefaring civilization.

Asteroids can be pitstops for interplanetary travel
4

Main belt and near-Earth 

Asteroids



Motivation

⚫ Surface maps yield crucial geological information of 

the asteroid:

◼ Orbit

◼ Composition

◼ Density

◼ Shape

◼ Gravity field
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Asteroid Bennu

Surface mapping missions pave the way for surface 

exploration missions



The Swarm approach

⚫ “Whole greater than the sum of the parts”

⚫ Solve a complex task using many individuals.

⚫ Individuals are simple, low-cost, disposable.

6



Mapping trajectories

⚫ The mapping trajectories of the spacecraft, can be 

broadly classified into 2 types, when surface 

interactions are not considered:

◼ Orbits

◼ Flybys
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DAWN’s orbit around Vesta Rosetta’s flyby of  Steins



Trajectory comparison

Flyby Orbits

Pros:

• Ideal for short period observations

• Relatively fuel efficient

• Single spacecraft design can be used 

for multiple targets

• Can be extended to observe multiple 

targets

• Swarm deployment is easier 

compared to orbital operations

Cons:

• Sun vector is a crucial factor for 

visual observations

• Shorter inspection times

• Multiple flybys may be required to 

completely observe the target

Pros:

• Dedicated to single target body 

observations

• Suitable for long term observations

• Sun vector is not a crucial factor

Cons:

• Orbit insertion burns are fuel 

expensive

• Susceptible to gravitational 

instabilities

• Spacecrafts need to be separately 

designed for different target bodies

• Difficult to deploy an orbiting 

constellation
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Flybys are suitable for low cost, low thrust missions; 

can be deployed on a spacecraft swarm



Trajectory design
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Objective is to find a trajectory that connects the 

current position to its destination in desired time



Trajectory design
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Point B

t = tf

Point A

t = 0

Trajectories allowed by the dynamics minimize fuel

Natural trajectory

X



Objective
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⚫ To find the trajectories allowed by local gravity field, 

which takes a spacecraft from its current location to 

a desired location with in a given time.

⚫ Extend this to find trajectories for spacecraft swarm, 

so that all spacecrafts reach their destinations within 

specified times.



Challenges

⚫ Complex dynamics around around the asteroid.

⚫ Each asteroid exhibits different dynamics.

⚫ Solar radiation is a significant perturbation

⚫ Keplerian tools cannot be used to design 

trajectories.
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Problem reduction
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⚫ For a given initial and final positions, and a flyby 

time, the trajectory is specified by finding the 

required initial velocity.



Approach
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⚫ Iterative schemes to search for the desired initial 

condition are developed.

⚫ The schemes are performed over the entire swarm 

population to obtain required initial conditions

⚫ The initial conditions are then propagated forward 

in time to obtain the trajectories

⚫ Gravity, solar tide, and SRP are used to model the 

dynamics



Trajectory design algorithm
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Spacecraft swarm

⚫ A ring shaped spacecraft swarm of 𝑁 uniformly 

separated spacecraft as follows

⚫ The location of the jth spacecraft is given by:
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Swarm layout

𝑅𝑗 =
𝑑𝑠𝑒𝑝 cos(𝑗 − 1)𝜃𝑠𝑒𝑝
𝑑𝑠𝑒𝑝 sin(𝑗 − 1)𝜃𝑠𝑒𝑝

𝑧

⚫ Where:

𝜃𝑠𝑒𝑝 =
2𝜋

𝑁



Simulations

⚫ The trajectory design algorithm is demonstrated for the ring 

shaped swarm.

⚫ The Swarm is desired to fly by the asteroid 433 Eros

⚫ The spacecrafts need to maintain a radial separation of 50 

Km from the center of the asteroid

⚫ The spacecrafts are desired to travel a distance of 60 km  

along the spin axis of the asteroid in 10 minutes

⚫ Nominal 12U CubeSat parameters are used for the spacecraft 

model
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Swarm simulations

⚫ The following parameters were used for simulating 

the flyby with the spacecraft swarm
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Targeting geometry with the 

spacecraft swarm

Parameter Value

Asteroid 433 Eros

Number of  spacecraft 3, 4, 5

Radial separation (Km) 50

Starting distance (Km) -30

Stopping distance (Km) 30

Flyby duration (mins) 10



3 spacecraft trajectories
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The trajectories generated for 3 spacecrafts



Spacecraft positions
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The algorithm yields desired flyby trajectories, with 

in the desired 10 minutes time



3 spacecraft flyby
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All the spacecrafts fly with a 100 m/s velocity during 

the flyby



4 Spacecraft trajectories
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The trajectories generated for 4 spacecrafts



Spacecraft positions
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The algorithm yields desired flyby trajectories, with 

in the desired 10 minutes time



Flyby velocities
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All the spacecrafts fly with a 100 m/s velocity during 

the flyby



Results
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The trajectories generated for 5 spacecrafts



Spacecraft positions
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The algorithm yields desired flyby trajectories, with 

in the desired 10 minutes time



Flyby velocities
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All the spacecrafts fly with a 100 m/s velocity during 

the flyby



Mapping demonstration

⚫ A mapping simulator which couples the trajectory 

and attitude control with the following architecture
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Results

⚫ The simulator is demonstrated with 2 sets of 

attitude control strategies:

i. Nadir pointing

ii. Field of view Sweeping
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In both the cases, the area mapped  by the 

instrument is noted 



Instrument parameters

⚫ The following are the parameters of the onboard 

instrument on the 
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Parameter Value

FOV 15

Near distance (m) 0.1

Far distance (Km) 500,000

Frame rate (fps) 5

A pinhole camera model is used to simulate the 

instrument



3 Spacecraft mapping
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FOV Sweeping

Observed Area (Km2) 1103.34

% Observed Area 100

Nadir pointing

Observed Area (Km2) 698.01

% Observed Area 63.26



4 Spacecraft mapping
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FOV Sweeping

Observed Area (Km2) 1103.34

% Observed Area 100

Nadir pointing

Observed Area (Km2) 965.89

% Observed Area 87.54



5 Spacecraft mapping
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FOV Sweeping

Observed Area (Km2) 1103.34

% Observed Area 100

Nadir pointing

Observed Area (Km2) 852.30

% Observed Area 76.24



Discussion

⚫ Surface mapping missions of asteroids yield rich 

geological information.

⚫ Flyby trajectories performed by spacecraft swarm 

are better suited for surface mapping than orbits

⚫ This work presented a trajectory design algorithm 

for a swarm of spacecrafts around asteroids

⚫ The algorithm uses an iterative numerical scheme 

using the state transition matrix, to find the desired 

natural trajectories
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Discussion

⚫ The algorithm is demonstrated for a circularly 

symmetric swarm consisting of 3, 4,& 5 spacecrafts.

⚫ The demonstrations showed a flyby around the 

asteroid 433 Eros, where the spacecrafts are 

required to travel at a speed of 100 m/s.

⚫ These trajectories are then coupled with attitude 

control strategies to 100% surface mapping 

coverage.
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Future work
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⚫ Integrate with strategies to search for optimal 

mapping locations.

⚫ Integrate with optimal attitude tracking strategies 

to improve coverage with minimal energy.

⚫ Design flyby sequences to map multiple asteroids.



Thank You
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Questions ?
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