

Overview and Results from the ESA CDF Study on Small Planetary Platforms (SPP)

Silvia Bayón Science Future Missions Department European Space Agency

Interplanetary Small Satellite Conference, 7-8 May 2018, Pasadena

ESA UNCLASSIFIED - For Official Use

European Space Agency

*

Presentation Overview

- 1. Setting the scene: Rationale for the SPP study
- 2. SPP CDF study overview and main results
- 3. Plans and future outlook

Interplanetary Small Satellite Conference |7-8 May 2018 | Slide 2

Setting the scene: Rationale for the SPP study

In 2016, ESA issued an open "Call for New Science Ideas":

- Not a Call for Missions, but intended to scan for new ideas which could lead to new interesting future missions, possibly following some maturation time
- Out of the 26 proposals received, three themes were selected by the advisory committee:
- 1. High accuracy near IR astronomy
- 2. Quantum Decoherence
- 3. Planetary science with small platforms

A workshop with the scientific community confirmed the interest on smallsats for planetary science missions, with emphasis on the potential capability to provide "multipoint measurements" for a moderate cost.

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 3

= II 🛌 :: 🖛 + II 🗯 들 = II II = = = :: 🖬 🖬 II = :: II 👀 🕷 🕪

Setting the scene: Rationale for the SPP study

- The big variety of potential mission options was not compatible with a single CDF study, so a smaller sub-set of 4 scenarios was agreed on and implemented via a baseline mission configuration consisting of a mother spacecraft and 4 small satellites, with different payload compliments depending on the target:
 - 1.Study the environment of an active main belt object
 - 2.Study the interior structure of an inactive Asteroid/NEO
 - 3.Study a planetary body satellite: Mars- Deimos or Phobos (potentially captured asteroids)

4.Study multiple small bodies – a statistically significant number, which the science team defined as >10-100 (based on previously characterized bodies)

Note: Due to time constraints only scenarios 1 and 2 will be discussed in this overview

Interplanetary Small Satellite Conference |7-8 May 2018 | Slide 4

*

Setting the scene: Rationale for the SPP study

- The SPP study was then conducted at the ESA Concurrent Design Facility (CDF) at the end of 2017.
- The aim was to assess the set of mission concepts within the boundaries defined for M-Class or F-Class missions (F-missions being an evolution of S-missions, i.e. fast track small missions)
 - The reference mission concepts <u>are not real missions or candidate</u> <u>missions</u>.
 - The reference mission concepts are used for defining typical/envelope needs.
 - For each reference mission, a "strawman" payload was defined, with the support of the scientists, with the sole purpose of defining technical requirements for the small satellites.

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 5

*

SPP CDF Study Overview and Main Results – The "Strawman" Payload(s)

Active Mai	n Belt body -	- Volatiles Inv	estigation
Sat 1	Sat 2	Sat 3	Sat 4
Mass spectrometer (EVITA, ITMS study)	Mass spectrometer (EVITA, ITMS study)	Camera (CUCorbiter/Exo Mars/ MarcoPoloR)	IR spectrometer (BIRCHES/NASA)
Pressure sensor (COPS/Rosetta)	Magnetometer (MAGIC/M- ARGO)	Magnetometer (MAGIC/M- ARGO)	
	Ion/electron spec (CHAP/M- ARGO)	Ion/electron spec (CHAP/M-ARGO)	
Radio Science	Radio Science	Radio Science	Radio Science

Inactive I	NEO- Interior	Structure Inve	estigation
Sat 1	Sat 2	Sat 3	Sat 4
Low frequency radar (DISCUS study)	Low frequency radar (DISCUS study)	High frequency radar (AIM D1 study)	IR spectrometer (BIRCHES, LunaSat, NASA)
Camera (CUCorbiter)	Camera (CUCorbiter)		
Radio Science	Radio Science	Radio Science	Radio Science

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 6

SPP CDF Study Overview and Main Results – Mission Requirements

- Multipoint mission with simultaneous science observations around small bodies (potentially extended to planets and their satellites)
- •
- Mother spacecraft carrying 4 smallsats
- Consider a single launch with the Epsilon or Vega-C and a shared launch on Ariane 6.2
- Launch date between 2024 and 2034
- Selected final target to be reached after a maximum of 5 years (TBC) after launch
- 6 months (TBC) of science operations after deployment of the smallsats
- Total wet mass at launch shall not exceed 900 kg (TBC) to remain compatible with the ARIEL mission
- Mother spacecraft and smallsats shall be compatible with storage on ground of at least 3 years (TBC)
 Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 7

European Space Agency

*

SPP CDF Study Overview and Main Results – Mother Spacecraft Requirements

- The mother spacecraft shall not accommodate scientific payload (simplified approach for the purpose of the study)
- The mother spacecraft shall be able to carry the smallsats to the selected final target, providing to them thermal control and power during cruise and the data relay service to/from Earth after their deployment

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 8

esa

SPP CDF Study Overview and Main Results – Smallsat Requirements

- Each of the smallsats shall be able to accommodate a minimum of 3 kg (TBC) of scientific payload, providing 10 W (TBC) average electrical power and 5V (TBC) power interface
- All the smallsats shall have identical interfaces towards the mother spacecraft and towards the scientific payload
- The smallsats shall be capable of performing science operations with all the scientific instruments and the intersatellite-link (ISL) communications package operating simultaneously
- The smallsats shall be able to maintain a line of sight to point of interest and shall have AOCS capabilities for station keeping after deployment from the MC

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 9

||

SPP CDF Study Overview and Main Results – Mission & System Level Trade-offs

Target	co Engine	EP Engine	Launcher	Mass at Target	PL/MC	SN#	PI/NS	Payload Mass for 1 NS	Time of Flight (Years)
Main Asteroid Belt Inner	СР	-	Epsilon	37.69	20%	4	15%	0.28	2.0
Main Asteroid Belt Inner	СР	-	VegaC	49.03	20%	4	15%	0.37	2.0
Main Asteroid Belt Inner	CP	-	Ariane 6.2 GTO	157.40	20%	4	15%	1.18	2.0
Main Asteroid Belt Inner	СР	-	Ariane 6.2 L2	12.04	20%	4	15%	0.09	2.0
Main Asteroid Belt Inner	-	T6	Epsilon	761.53	12%	4	15%	3.43	6.5
Main Asteroid Belt Inner	-	PPS1350	Epsilon	449.61	12%	4	15%	2.02	6.6
Main Asteroid Belt Inner	-	T6	VegaC	1348.49	12%	4	15%	6.07	12.3
Main Asteroid Belt Inner	-	PPS1350	VegaC	764.75	12%	4	15%	3.44	12.5
Main Asteroid Belt Inner	-	Т6	Ariane 6.2 GTO	1340.35	12%	4	15%	6.03	10.5
Main Asteroid Belt Inner	-	PPS1350	Ariane 6.2 GTO	842.97	12%	4	15%	3.79	10.6
Main Asteroid Belt Inner	-	Т6	Ariane 6.2 L2	674.84	12%	4	15%	3.04	4.2
Main Asteroid Belt Inner	-	PPS1350	Ariane 6.2 L2	483.39	12%	4	15%	2.18	4.2
Main Asteroid Belt Inner	СР	Т6	Epsilon	135.81	20%	4	15%	1.02	2.1
Main Asteroid Belt Inner	СР	PPS1350	Epsilon	116.87	20%	4	15%	0.88	2.2
Main Asteroid Belt Inner	СР	Т6	VegaC	176.69	20%	4	15%	1.33	2.1
Main Asteroid Belt Inner	СР	PPS1350	VegaC	152.06	20%	4	15%	1.14	2.3
Main Asteroid Belt Inner	СР	Т6	Ariane 6.2 GTO	567.16	20%	4	15%	4.25	2.6
Main Asteroid Belt Inner	СР	PPS1350	Ariane 6.2 GTO	488.10	20%	4	15%	3.66	2.9
Main Asteroid Belt Inner	СР	Т6	Ariane 6.2 L2	43.39	20%	4	15%	0.33	2.0
Main Asteroid Belt Inner	СР	PPS1350	Ariane 6.2 L2	37.34	20%	4	15%	0.28	2.0

Time of Flight (Years) at Target Payload Mass for 1 NS ▲ Engine Engine auncher PL/MC get PI/NS Mass ŧNS ē. --2.00 NEOs СР 12% 0.56 -Epsilon 92.79 20% 4 NEOs CP VegaC 132.62 20% 4 12% 0.80 2.00 -CP Ariane 6.2 GTO 4 12% 2.42 2.00 NEOs 402.61 20% CP Ariane 6.2 L2 20% 4 12% 0.26 2.00 NEOs 43.10 -NEOs -Т6 Epsilon 864.89 12% 4 12% 3.11 4.20 NEOs PPS1350 Epsilon 539.89 12% 4 12% 1.94 4.76 -12% 8.16 NEOs -Т6 VegaC 1539.84 12% 4 5.54 NEOs PPS1350 VegaC 921.52 12% 4 12% 3.32 9.28 -NEOs Ariane 6.2 GTO 12% 4 12% 5.45 6.26 -T6 1514.93 NEOs PPS1350 Ariane 6.2 GTO 1015.76 12% 4 12% 3.66 7.00 -2.10 NEOs Ariane 6.2 L2 752.95 20% 4 12% 4.52 -T6 NEOs PPS1350 Ariane 6.2 L2 582.48 20% 4 12% 3.49 2.14 -12% 2.07 NEOs CP T6 Epsilon 165.12 20% 4 0.99 NEOs CP PPS1350 Epsilon 153.44 20% 4 12% 0.92 2.12 CP 235.99 20% 4 12% 1.42 2.11 NEOs T6 VegaC NEOs CP PPS1350 VegaC 219.30 20% 4 12% 1.32 2.18 4 4.30 NEOs CP T6 Ariane 6.2 GTO 716.44 20% 12% 2.32 12% 3.99 2.54 NEOs CP PPS1350 Ariane 6.2 GTO 665.78 20% 4 2.03 NEOs СР T6 Ariane 6.2 L2 76.69 20% 4 12% 0.46 NEOs СР PPS1350 Ariane 6.2 L2 71.27 20% 4 12% 0.43 2.06

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 10

*

SPP CDF Study Overview and Main Results – Quick Mission CSA Design Tool

		0.75 1.1	1.9 2.4		
ars 300 km LMO CP T6 Epsilon 325 400 7 \$494.4 0.14 ars 300 km LMO CP P59350 Epsilon 325 400 1564.0 0.08 ars 300 km LMO CP F6 VegaC 325 400 1564.0 0.08 ars 300 km LMO CP F5 VegaC 325 400 1564.0 0.08 ars 300 km LMO CP F55050 VegaC 325 400 1564.0 0.08 ars 300 km LMO CP F55050 VegaC 325 400 1564.0 0.08 ars 300 km LMO CP F55050 VegaC 325 400 1564.0 0.08 ars 300 km LMO CP F55050 Ariane 6.2 L2 225 400 1564.0 0.08 ars 300 km LMO CP F51550 Ariane 6.2 L2 225 400 1564.0 0.08 was 300 km LMO CP F51550 Ariane 6.2 L2 225 400 1564.0 0.08 was 300 km LMO CP F51550 Ariane 6.2 L2 225		Apophis	311P	TR 62 553.54 2.64 633.64 61.77 R81.85 R80.72 4.15 633.64 61.57 R82.85 R80.87 4.41 642.64 63.66 302.16 250.78 6.89 654.24 156.25 828.25 250.78 6.89 1564.24 156.26 302.19 250.78 6.89 1564.24 156.26 828.25 250.78 6.89 1564.24 156.26 120.82 250.77 6.56 77.43 164.14 720.66 77.43 156.47 43.96 156.27 120.82 165.77 2.56 77.43 164.67 120.82 165.77 2.55 46.77 43.96 120.82 165.77 2.55 46.77 43.96	seen 10% 4 12% seen 15% 4 12%
Ander Probles CP - Vegals 2 2 0 TO 2 0 S 440 - Mers Probles CP - A 104 6 S L 2 2 S 4 40 - - Mers Probles CP - A 104 6 S L 2 2 S 4 40 - - Mers Probles CP - A 104 6 S L 2 2 S 4 40 - - Mers Probles CP - A 104 6 S L 2 2 S 4 40 -	Target	NEOs Ariane 6.212	Main Asteroid Belt Inner	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.400 D.2% 4 D.2% 0.500 D.2% 4 D.2% 14.200 D.5% 4 D.2% 14.200 D.5% 4 D.2% 11.900 D.5% 4 D.2% 0.00% 4 D.2% 6.00 0.00% 4 D.2% 6.00 0.00% 4 D.2% 6.00 0.5% 4 D.2% 6.00
Mars Photos CP 15 Epsilon 325 4400 (584)4 0.14 Mars Photos CP PS1500 Epsilon 325 4400 F540 D018 Mars Photos CP PS1500 Epsilon 325 4400 F540 D018 Mars Photos CP PS1500 VepaL 325 4400 F5404 D14 Mars Photos CP PS1500 VepaL 325 4400 F5404 D14 Mars Photos CP PS1500 VepaL 325 4400 F5404 D14 Mars Photos CP PS1500 Airans 6.2 GTD 325 4400 F540 D16 Mars Photos CP PS1500 Airans 6.2 GTD 325 4000 F540 D16 Mars Photos CP PS1550 Airans 6.2 L2 325 4000 F640 0.00 Mars Photos CP PS1550 Airans 6.2 L2 325 4000 F640 0.00 <th>CP EP P/L mass (kg)</th> <th>- PPS1350 T6</th> <th>- T6 2.02</th> <th>State Total 2.8 State S</th> <th>0000 10% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12%</th>	CP EP P/L mass (kg)	- PPS1350 T6	- T6 2.02	State Total 2.8 State S	0000 10% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12% 0000 15% 4 12%
Inc.Co LP Epailtini acc 400 - NEDe DP - Voga62 325 400 - NEDe DP - Ariane 6.2 G TO 325 400 - NEDe DP 6 Ariane 6.2 G TO 325 400 - NEDe DP 6 Epailon - - 4000 0.14 NEDe - F Epailon - - 4000 0.04 NEDe - F5 Station - - 4000 0.06 NEDe - T5 Voga62 - - 4000 0.06	ToF (years)		2.84		0.330 20% 0 12% 0.705 20% 4 12% 4480 20% 4 12% 7000 20% 4 12% 12850 12% 4 12% 14000 12% 4 12% 14000 12% 4 12% 14000 12% 4 12%
NECIs	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	same form of f max 66% 25% - beso form of f 25% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 66% 80% 60% 80% 60% 80% 72000 <th>- 134, 12 2000 104, 32 - 192, 33 2000 104, 32 - 192, 34 2000 104, 32 - 193, 36 173, 75 2000 155, 12 - 133, 86 173, 75 2000 155, 12 - 133, 86 173, 75 2000 155, 12 - 133, 86 173, 75 2000 153, 44 - 102, 52, 75, 748, 33 2000 254, 57 244, 33 - 102, 53, 75, 39, 11 2000 76, 44 44</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>Home L2% 4 L2% 199900 12% 4 12% 70000 20% 4 12% 6340 20% 4 12% 6705 20% 4 12% 6705 20% 4 12% 6705 20% 4 12% 6480 20% 4 12% 6480 20% 4 12% 6480 20% 4 12%</th>	- 134, 12 2000 104, 32 - 192, 33 2000 104, 32 - 192, 34 2000 104, 32 - 193, 36 173, 75 2000 155, 12 - 133, 86 173, 75 2000 155, 12 - 133, 86 173, 75 2000 155, 12 - 133, 86 173, 75 2000 153, 44 - 102, 52, 75, 748, 33 2000 254, 57 244, 33 - 102, 53, 75, 39, 11 2000 76, 44 44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Home L2% 4 L2% 199900 12% 4 12% 70000 20% 4 12% 6340 20% 4 12% 6705 20% 4 12% 6705 20% 4 12% 6705 20% 4 12% 6480 20% 4 12% 6480 20% 4 12% 6480 20% 4 12%
The Column CP Person Martine 62 (31) acts 480 FM00 0.08 MEDs DP T6 share 62 (12) 255 400 50.00 0.08 Atterad Bell Inner (DP F9359) Anane 62 (12) 255 400 50.00 0.08 Asterad Bell Inner (DP Cayline 62 (12) 255 400 - - Asterad Bell Inner (DP - Anane 62 (20) 255 400 - - Asterad Bell Inner (DP - Anane 62 (20) 325 400 - - Asterad Bell Inner (DP - Anane 62 (20) 325 400 - - Asterad Bell Inner (P - Anane 62 (20) 325 400 - - Asterad Bell Inner (P - Anane 62 (20) 325 400 - - Asterad Bell Inner (P F Epsilon - - 3564 0.04 .044 Asterad Bell Inner (P P Epsilon - - 3564 <td< th=""><th>· ·<</th> ·<</td<>	· ·<	· ·<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Solution Color	200 4 L2x 7000 20% 4 L2% 7000 20% 4 L2% 9018 L2% 4 D5% 9477 L2% 4 B5% 10060 L2% 4 B5% 19724 L2% 4 B5% 19724 L2% 4 B5% 19724 L2% 4 B5% 19724 L2% 4 B5%
Asterid Bell Inner T6 VegaC - 550.0 0.14 Asterid Bell Inner PPS1350 VegaC - 1540.0 0.14 Asterid Bell Inner T6 Arians 6.2 (510) - 550.0 7.04 Asterid Bell Inner PPS1350 Arians 6.2 (510) - 550.04 0.14 0.14 Asterid Bell Inner PPS1350 Arians 6.2 (2.2) - 550.04 0.06 Asterid Bell Inner PS1350 Arians 6.2 (2.2) - 1540 0.08 Asterid Bell Inner PS1350 Arians 6.2 (2.2) - 1540 0.08 Asterid Bell Inner PS1350 Arians 6.2 (2.2) - 1540 0.08	i 2200 - - 2200 5500 13580 i - 2200 - 2200 5500 13580 i - 2200 - 2200 5500 13580 i - 2000 - 2000 5500 3460 i - 2000 - 2000 5500 5400 i - - 200 900 5500 5500 i - - 900 900 5500 5500 i - - 900 900 5500 5500 i - - 1200 5500 5500 5500 i 1000 - - 1200 5500 5500 5500 i 1000 - - 1200 5500 5500 5500	Tese T788.42 40.55 2027 TR2.87 - 556 1535.03 263.33 407 720.27 500 173.42 574.85 172.32 556 101.57 452.42 635.83 363.72 363.83 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.84 363.72 363.72 363.84 363.72 363.72 363.84 363.72 363.72 363.84 363.72 363.72 363.84 </td <td>- 1535.03 4500 1348.49 - 1 - 1011.57 4500 764.75 2 - 1525.77 4500 1340.35 - 1115.02 4500 142.97 2 - 768.19 4500 674.84 - 633.40 4500 483.39 - 138.36 154.59 4500 4500 135.61 - 136.36 154.59 4500 156.87</td> <td>86.54 47% 57.5 470.89 2.35 88.151 86.26 67% 57.15 456.79 2.56 1453.55 87.42 677.15 456.79 2.56 1453.55 87.42 647% 54.03 365.70 11.51 659.56 87.42 54.03 365.70 11.51 156.2 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.75 1197.70 305.75 1197.70 305.75 1197.70<!--</td--><td>17000 12% 4 15% 17000 12% 4 15% 13000 12% 4 15% 13000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15%</td></td>	- 1535.03 4500 1348.49 - 1 - 1011.57 4500 764.75 2 - 1525.77 4500 1340.35 - 1115.02 4500 142.97 2 - 768.19 4500 674.84 - 633.40 4500 483.39 - 138.36 154.59 4500 4500 135.61 - 136.36 154.59 4500 156.87	86.54 47% 57.5 470.89 2.35 88.151 86.26 67% 57.15 456.79 2.56 1453.55 87.42 677.15 456.79 2.56 1453.55 87.42 647% 54.03 365.70 11.51 659.56 87.42 54.03 365.70 11.51 156.2 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 14.25 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.55 1197.70 305.75 1197.70 305.75 1197.70 305.75 1197.70 </td <td>17000 12% 4 15% 17000 12% 4 15% 13000 12% 4 15% 13000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15%</td>	17000 12% 4 15% 17000 12% 4 15% 13000 12% 4 15% 13000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15% 10000 12% 4 15%

💶 📲 🛌 🚛 📥 📲 🚟 🔤 🔤 📲 📲 🚍 📲 🚍 🚱 📲 🚍 🖬 🗮 🛨 💥 🔤 🚺 European Space Agency

SPP CDF Study Overview and Main Results – Databases of Small Bodies

NEOs

- Perihelion < 1.3 AU
- Wide range of SMAs and inclination
- Wide range of DV

· _ II 🛌 :: = + II = 🔚 드 II II = = :: :: II = II 💥 🔚 🕪

European Space Agency

ASA

SPP CDF Study Overview and Main Results – Baseline Scenarios Overview

	Apophis (non-active)			311P (active)
Target Diam Target Distanc NS SCI: rada DV ~ 4.5 km	eter: 370 m ce:0.75-1.1 AU r tomography n/s (with EP) 2.75 88	awman P/L 1 OPT 2 5 kg 2.95 kg 8 W 20 W 2 bit 52 Chit	Target Diameter: Target Distance: 1.9 NS SCI: gases/vo DV ~ 10-11 km/s (380 m 9 - 2.4 AU platiles (with EP)
0.75 1.1 1.9 Apophis	2.4 311P	3 U 3 U 	Interplanetary Small Satellite	e Conference 7-8 May 2018 Slide 13 European Space Agenc

SPP CDF Study Overview and Main Results – Transfer Overview

SPP CDF Study Overview and Main Results – Rendezvous Overview

Mother spacecraft rendezvous and insertion in stable orbit in plane between the Earth and the target.

Slow stepped approach 4 to 6 weeks

2

Deployment sequence of the smallsats individually with mother spacecraft in stable orbit.

Smallsats maneuver to operational distance to the target

Mother spacecraft insertion in final trajectory in the trail of the target, with visibility of the whole constellation

SPP CDF Study Overview and Main Results – Rendezvous Overview

Mother spacecraft: ping-pong" trajectory in the trail of the target taken as baseline

- No eclipses for mother spacecraft
- 1 correction every 7 days

Smallsats: 3-4 days arc hyperbola

- keeping an inclination that avoids eclipse while taking pictures of the "night side" for a small target - 5 km orbit >> 500m of the diameter of the target
- Baseline No eclipses

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 16

311P

(active)

SPP CDF Study Overview and Main Results – Smallsats Design Summary

_ II 🛌 :: 🖛 🕂 II 🗮 🔚 二 II II = 二 :: :: II 🗮 🛏 🚺

SPP CDF Study Overview and Main Results – Smallsats Design Summary

· _ II 🛌 == + II == 🔚 _ II II = = = 🖽 🛶 🔯 II _ II = 💥 🛀 🕪

SPP CDF Study Overview and Main Results – Smallsats Design Summary

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 19

*

SPP CDF Study Overview and Main Results – NEO Option DV Budget

Mother spacecraft: 'ping-pong' hyperbola 7 day arcs (pericentre ~12 km, max distance ~20 km) Smallsats: 4-3-4-3 day hyperbolic arcs

3-day arc (pericentre ~5 km, max distance ~12 km)

4 day arcs (pericentre ~5 km, max distance ~16 km)

Delta V mother spacecraft:

Manoeuvres	Delta v (m/s)	margin	Total (m/s)
Transfer	4530	10% (EP)	4983
Orbit maintenance at target	2.4	-	10
Pointing & Attitude control	0.5	-	10
Total		-	4993

Delta V Smallsats:

Manoeuvres	Delta v (m/s)	margin	Total (m/s)
Rendezvous & Insertion	1	100%	
Hyperbolic arcs	6.7	5%	10
Pointing & Attitude control	0.2	100%	
Total		-	10

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 20

*

SPP CDF Study Overview and Main Results – NEO Option Mass Budget

XA

Smallsat Mass Budget	N	/lass [kg]
Attitude, Orbit, Guidance, Navigation Control		0.725
Communications		0.48
Chemical Propulsion		3.08
Data-Handling		0.31
Electric Propulsion		0.00
Instruments		3.30
Mechanisms		1.02
Power		5.42
Structures		2.70
System Engineering		0.00
Thermal Control		5.87
Harness	5%	1.15
Dry Mass w/o System Margin		24.06
System Margin	20%	4.81
Dry Mass incl. System Margin		28.87
CPROP Fuel Mass		0.52
CPROP Fuel Residual	2%	0.01
Total Wet Mass		29.40

Mother Spacecraft Mass Budget	Ν	/lass [kg]
Attitude, Orbit, Guidance, Navigation Control		10.20
Communications		23.07
Chemical Propulsion		0.00
Data-Handling		3.60
Electric Propulsion		86.97
Instruments		0.00
Mechanisms		38.68
Power		67.12
Structures		81.00
System Engineering		0.00
Thermal Control		36.08
Harness	5%	17.34
Dry Mass w/o System Margin		364.05
System Margin	20%	72.81
Wet Mass Smallsat	4.00	117.61
Dry Mass incl. System Margin		554.48
EPROP Propellant Mass		225.38
EPROP Propellant Residual	2%	4.51
Total Wet Mass	7	84.36
Target Wet Mass		900.00
Below Target Mass by		115.64

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 21

*

SPP CDF Study Overview and Main Results – Main Belt Option DV Budget

Mother spacecraft: 'ping-pong' hyperbola 7 day arcs (pericentre ~12 km, max distance ~20 km) Smallsats: 4-3-4-3 day hyperbolic arcs

3-day arc (pericentre ~5 km, max distance ~12 km)

4 day arcs (pericentre ~5 km, max distance ~16 km)

Delta V mother spacecraft:

Manoeuvres	Delta v	margin	Total
Transfer	10000	10% (EP)	11000
Orbit maintenance at target	2.4	-	10
Pointing & Attitude control	0.5	-	10
Total		-	11010

Delta V Smallsats:

Manoeuvres	Delta v	margin	Total
Rendezvous & Insertion	1	100%	
Hyperbolic arcs	6.7	5%	10
Pointing & Attitude control	0.2	100%	
Total		-	10

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 22

*

SPP CDF Study Overview and Main Results – Main Belt Option Mass Budget

Smallsat Mass Budget	ſ	Mass [kg]
Attitude, Orbit, Guidance, Navigation Control		0.725
Communications		0.48
Chemical Propulsion		3.08
Data-Handling		0.31
Electric Propulsion		0.00
Instruments		3.54
Mechanisms		1.02
Power		4.74
Structures		2.70
System Engineering		0.00
Thermal Control		1.12
Harness	5%	0.89
Dry Mass w/o System Margin		18.60
System Margin	20%	3.72
Dry Mass incl. System Margin		22.33
CPROP Fuel Mass		0.52
CPROP Fuel Residual	2%	0.01
Total Wet Mass		22.86

Mother Spacecraft Mass Budget	Ν	/lass [kg]
Attitude, Orbit, Guidance, Navigation Control		10.20
Communications		23.07
Chemical Propulsion		0.00
Data-Handling		3.60
Electric Propulsion		155.14
Instruments		0.00
Mechanisms		40.99
Power		136.78
Structures		81.00
System Engineering		0.00
Thermal Control		69.90
Harness	5%	26.03
Dry Mass w/o System Margin		546.71
System Margin	20%	109.34
Wet Mass Smallsat	4.00	91.42
Dry Mass incl. System Margin		747.48
EPROP Propellant Mass		243.69
EPROP Propellant Residual	2%	4.87
Total Wet Mass	996.05	
Target Wet Mass		900.00
Above Target Mass by		96.05

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 23

*

XA

SPP CDF Study Overview and Main Results – Some Conclusions

- The SPP CDF study has provided a "tool-box" of elements for the design of planetary science missions involving multi-point observations of a body with small satellites
- The cubesat standard shape and form factors where assumed in the study for simplicity and availability of hardware (like the dispenser for example).
 - This choice heavily constraints the accommodation of scientific instruments (no protrusions)
 - Dedicated/tailored designs of the small satellites (not cubesats) will be consider in further steps to maximise payload mass and accommodation possibilities
- The size (mass/gravity field) of the selected target drastically impacts the mission and spacecraft designs
 - Missions to targets below ~ 1km in diameter can afford to have the mother in a "pingpong" orbit trailing the body and always in visibility of the smallsat network (in hyperbolic arcs) – there are no eclipses and the ISL can remain simple with patch LGAs
 - Missions to targets above ~ 1km would require the smallsats to go into orbit and the ISL to be a lot more complex in topology and hardware (MGA on mother spacecraft for example)

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 24

Plans and Future Outlook

• Strong interest both in the scientific community and within ESA to approach planetary science missions in a different, innovative way by considering small satellites with reduced and very focused science objectives.

• The use of smaller spacecraft can help in filling (as secondary passengers) the unused launcher capacity in larger missions, therefore reducing the overall cost.

• A call for proposals dedicated to planetary missions using small satellites (with a mother spacecraft) is expected to be released later this year.

Credits go to the ESA CDF team for their work on this study requested by the Science Future Missions department

Thank you for your attention!

Interplanetary Small Satellite Conference 7-8 May 2018 | Slide 26

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ = = = ■ ■ ■ ■ = = ₩ = ■