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The case for MAT

> Dust and water ice aerosols affect the Martian “weather”:
— They are both radiatively active.

» There is need for continuous and simultaneous aerosol monitoring:

= To understand the interaction between aerosols and circulation;
— To enable weather forecasting (e.g. evolution of dust storms);
— To support robotic AND future human exploration.
» The key factor is the orbit! An areostationary orbiter is ideal:
— To observe a large, fixed region (~80° away from nadir);
— To provide high sampling rate (fractions of the hour);
- To monitor throughout the daily and seasonal cycles;
— To monitor rapidly evolving meteorological phenomena;

—> To monitor changes in surface properties (e.g. albedo, T.inertia). |



A regional dust storm from areostationary vs polar orbit

View from about 17,000 km above the equator
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Mission objectives

To provide answers to the scientific questions:

What are the processes controlling the dynamics of dust and water ice clouds,
and promoting the evolution of regional dust storms into global-scale dust events?

We plan to place and operate MAT in areostationary orbit in order to:

» Monitor at high sampling rate a large, fixed portion of the planet
where dust storms and water ice clouds are likely to occur, using
visible and infrared wavelengths;

» Observe the temporal evolution of dust storms and water ice clouds
in the monitored area throughout the diurnal cycle

» Detect possible changes in surface properties (e.g. thermal inertia
and albedo), particularly after the occurrence of large dust storms.
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The 45 kg SmallSat with electric propulsion

» ~27U Cubesat, 45 kg
» .5m Antenna, 8-128 kbps data rate
» PSC Lightband Interface

< 3800mm >

640 mm

IRIS transponder + KaPDA antenna Sia BRI \_ 27UVolume

MAT Case #2 Shown



Solar Electric Propulsion System

» 800 W BOL Power using 130 W/kg deployable solar arrays
» 213 W EOL @ Mars Perihelion

» 3.3 km/s AV using ExoTerra Hall Effect Thruster

» 96-98% Efficiency PPU. CubeSat form factor

0.65 kg mass
0.25 U volume
Power range : 75450 W
I range : 700-1500s
Thrust range : 4-33 mN
Flexible propellants : iodine,
xenon, krypton, argon, neon

“Halo” 4th Generation Prototype Solar Array Deployment °



Mission Architecture

We analyzed 3 mission scenarios

A\
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Case 1 Case 3

_ , o Being released in GTO,
Rideshare on an orbiter mission to o
autonomous navigation to Mars,
Mars, release after Mars capture,
_ _ , autonomous Mars capture,
descent into areostationary orbit _ _ _
descent into areostationary orbit

35 kg spacecraft wet mass
64 kg spacecraft wet mass

Case 2 (current baseline)

Rideshare on a mission to Mars,
autonomous Mars capture,
descent into areostationary orbit

45 kg spacecraft wet mass



Trajectories to Mars

Final Arestationary Orbit
SMA 17,031 km

S | e AV capabilities and range estimates

Mars Capture to Arestationary

Fuel
Allocated Delta V | Range Estimate

Case | (kg of Xe) (m/s) (m/s)

1 4.00 1619 850 2200

2 10.62 3538 1543 | 4300

3 25.00 7283 6543 | 11640
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Payload

One visible camera: Off-the-shelf camera
( ECAM-C50 from MSSS):

- Fixed-focus, narrow-angle lens;
= 2592 x 1944 pixels;
= 29° x 22° FOV (full disk and limb);

- 4 km resolution. Malin
Space

Two thermal infrared camera developed by MSSS: Science
: Systems
- Fixed-focus, narrow-angle lens;
Malin Space Science Systems, Inc
9 640 X 480 p|Xe|S’ Proprietary Information

- Same field of view as visible camera; 16 km resolution;
—> Filter wheel for selecting 6 spectral ranges;
— Detectors responsive in the range 7.9 - 16 um.

Digital Video Recorder: Off-the-shelf from MSSS (ECAM-DVR4)
- Buffer Size: 32 GB Non-Volatile / 128 MB Volatile 5
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Products

Visible Images during daylight

Maps from IR retrievals: Temperature
and aerosols (dust, water ice) optical
depth up to ~60° from nadir :

—> 2D maps of 1,4, and T, ;

Ice /

- 2D maps of T at a few altitude levels;

- Maps and images are co-located
and simultaneous.

Three observational modes:
— Continuous monitoring (low res);

—> H,0 ice cloud observational campaign
(high res, only a few sols);

— Dust storm tracking campaign

(high res, 10-20 sols).
Bottleneck: Downlink data rate
(estimated to 20 kbits/sec on average)
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Key challenges identified for the MAT concept

(major to minor)

Propulsion: Solid lodine fuel technology not yet ready; Xenon gas
tank increases mass and volume; Thruster reliability to be tested.

Communication: Despite using JPL KaPDA high-gain antenna adapted
to the X-band, the data downlink rate is still low.

Heat dissipation: This is one of the identified top risks.

Radiation: This is another identified top risk, particularly in the
Case 3 scenario when leaving from GTO.

Data pre-processing: It would be desirable to develop advanced
automatic event detection algorithms based on neural networks.

Launch opportunities: Few for Case 2, more for 3; Desirable to look
at innovative opportunities for Mars capture (e.g. ballistic capture).

Station keeping: Challenging, but we identified mitigation options.
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Summary of the mission concept

Science Objectives

» The onset, transport, and decay of large (i.e. regional) dust storms for extended periods.

Monitor: » The formation, evolution, and dissipation of extended water ice clouds at high sampling rate.

» The changes in surface properties (e.g. thermal inertia, albedo) over the observed area.

» High-resolution (up to 4 km/pixel), visible images during daytime;

Produce: » 2D maps of column aerosol optical depth, multiple times a day;

> 2D maps of atmospheric temperature at a few altitude levels, multiple times a day;

Baseline Mission Overview

YV V. V V VYV VY

Spacecraft: ESPA-class orbiter; 45 kg; Electric propulsion (micro Hall thrusters, Xenon gas propellant).
Payload: Visible and 2 thermal infrared fixed-focus cameras (6 filters for selecting IR spectral ranges).
Journey to Mars: Rideshare on a primary orbiter mission; deployment before Mars capture.

Orbit: Areostationary (i.e. equatorial, circular, planet-synchronous orbit) at ~17,000 km above the equator.
Duration: 1 Martian year (primary mission).

Cost: Total anticipated cost estimated below $25M (but no launch nor DSN) + cost reserve

Thanks for your attention !
Imontabone@spacescience.org




