

Exploring Off-World Lava Tubes and Caves Using Small Robots

Himangshu Kalita, Jekan Thangavelautham Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory Aerospace and Mechanical Engineering Department University of Arizona

Outline

- Introduction
- Motivation
- System Overview of SphereX
- Ballistic Hopping Dynamics and Control
- Multi-robot algorithm for Navigation and Pathplanning inside lava tubes
- Simulations
- Discussions
- Conclusion

Introduction

Robotic exploration of extreme environments

SKyngms

Challenges

- Mars, Moon
 - Low-gravity, low traction
- Surface Contact Risks
 - Fine dust, static charge, porosity
- Planning, Navigation, Comms., Tracking
 - Unknown terrain, limited field of view

Tackling all of these challenges using a systems engineering approach

Low-Gravity Environments

Ease of mobility by hopping...

Approach

- The high risk involved all but eliminates use of a large lander to do it all.
- Use swarms of disposable robots that perform distributed science.

'Failure is an Option!''

SphereX Robots

3 kg mass, 30 cm diameter robot that can fly, hop and roll

SphereX Robots

• Attitude Control: Reaction-wheels, IMU Smartphone powered drone for off-world environments

Ballistic Hopping

Ballistic Hopping Dynamics

- Simplified model and calculation of initial velocity
 - Robot needs to hop from rest position r_{t0} with velocity v_{t0} and impact position r_{tf} with velocity v_{tf}
 - $d = d_x \hat{i} + d_y \hat{j}$ is the vector connecting the initial position to the final position
 - g is the acceleration due to gravity vector and τ is the transfer time

•
$$v_{t0} = v_x \hat{\iota} + v_y \hat{j} + v_z \hat{k}$$
, where $v_x = \frac{d_x}{\tau}$, $v_y = \frac{d_y}{\tau}$, $v_z = \frac{g\tau}{2}$

Trajectory Optimization

• Pinpoint soft landing can be achieved with two impulsive thrust to achieve initial and final delta v of

$$\Delta v_1 = v_{t0}$$
 and $\Delta v_2 = -v_{tf}$

• Optimization objective is to minimize the fuel consumption and the optimal index can be expressed as

$$J = \int_0^\tau \|T\| \, dt$$

Desired Orientation

• The normalized cross product of the z-axis of the inertial frame and the delta v vector provides the orientation axis of rotation.

$$n = [0 \ 0 \ 1]^{\mathrm{T}} \times \Delta v, u = \frac{n}{\|n\|}$$

• The angle of rotation, φ is calculated as

$$\varphi = \cos^{-1}\left(\frac{[0\ 0\ 1]\cdot\Delta v}{\|v_{t0}\|}\right)$$

• And finally the desired quaternion is calculated as

$$e_0 = \cos\frac{\varphi}{2}, \ e = \begin{cases} e_1 \\ e_2 \\ e_3 \end{cases} = u \sin\frac{\varphi}{2}, \ p = \{e_0 \ e_1 \ e_2 \ e_3\}$$

Ballistic Hopping Dynamics

• Attitude control system maintains the desired Euler angles and Angular velocities to perform ballistic hopping

$$\dot{\vec{\omega}} = J^{-1} \Big[-\vec{\omega} \times \overrightarrow{H_{tot}} + \overrightarrow{\tau_{rw}} + \overrightarrow{\tau_{dist}} \Big]$$

- Developed PD control algorithm that generate control torque inputs as a function of attitude errors $\overrightarrow{\tau_{rw}} = -K_p(e_{des} - e_{act}) - K_d(\omega_{des} - \omega_{act})$
- Main thruster provides thrust along +z axis of body frame

Ballistic Hopping Dynamics

Monte Carlo histories: (left) three-dimensional ballistic hopping trajectories, (right) landing ellipse (1σ and 2σ values)

Navigation Inside Caves/Lava Tubes

- No line of sight
- Communication signals are blocked due to rocks in the way
- Requires setting up communication relays
- We envision that the robots need to cooperate in the form of a bucket brigade to establish a multi-hop communication link

Multi-hop communication link strategy

Robot Position Measurement and Localization

- Inside lava tubes localization system such as GPS are not available
- Each robot is equipped with 2D laser scanner mounted on a servo
- Global frame (X,Y) is constructed w.r.t the After hopping fixed robot (Base 1)
- At any instant the relative position and orientation of a robot is measured w.r.t a neighboring stationary robot and then can be converted to global position and orientation

$$\beta = \alpha + \phi_{i-1}$$

$$\begin{pmatrix} x_i \\ y_i \\ \phi_i \end{pmatrix} = \begin{pmatrix} x_{i-1} \\ y_{i-1} \\ \phi_{i-1} \end{pmatrix} + \begin{pmatrix} R\cos\beta \\ R\sin\beta \\ \theta \end{pmatrix}$$

- A network of robots uses data from the already explored area for path planning and moves forward one at a time
- The network has to maintain communication link with the base station
- The cave environment is modeled as a grid with circular obstacles of different size
- Each cell of the grid is termed explored once it falls within the sensing radius of any robot
- The exploration is directed through the selection of free boundaries from a given configuration

- Cave Environment built and modeled as a grid
- Robot sensors detects surrounding
- Unexplored free boundary identified
- Random point selected on free boundary

- Unit vector between selected point and robot defines hopping direction
- Robol extphechapping distance is cal
- The unexprovention free transformer applies updated The final position must lie wi

Algorithm: Multi-robot path planning for hopping robots **Require**: Initial position, orientation for each robot;

- 1. for k = 0 to K do
- $2. \qquad \text{for } i = 1 \text{ to } N \text{ do}$
- 3. Update explored grid cells;
- 4. Identify obstacles;
- 5. Compute free boundary;
- 6. Select random point on free boundary;
- 7. Compute hopping direction;
- 8. Verify hopping direction;
- 9. Compute hopping distance;
- 10. Verify hopping distance;
- 11. Move robot i to new position;
- 12. Update explored grids and obstacles;
- 13. Compute new free boundary;
- 14. Set i = i+1;
- 15. end for
- 16. Set k = k+1;
- 17. end for

Scenario I: The robots should always

be in connection with the base robot •

Simulation of a system of 15 robots and a base robot at timestep 0, 2, 5, 10, 15 and 20

- The environment is built as a grid structure of length 50 units and width 8 units represented by 800x5000 grids.
- It consists of 6 circular obstacles of different radius.
- Each robot is considered to have a vision radius of 2 units, communication range of 5 units and a hopping range of 7 units

Transmission time for 1MB data through multiple hops

Case II: The robots can explore as a swarm without maintaining connection with the Base robot

Simulation of a system of 6 robots at timestep 0, 2, 6, 11, 15 and 21

Animation

Animation

Conclusions

- Presented a spherical robotic platform (SphereX)
- Detailed dynamics and control for mobility
- Proposed an algorithm for multi-robot navigation and path-planning in unknown environments like caves and lava tubes
- The proposed concept will allow mapping of these extreme environments compiled into a 3D point cloud
- Future work will include testing the algorithm on real cave environments along with hardware demonstrations

Mass Budget for Each SphereX

Major Subsystem	Mass (kg)
Computer Comms Electronics	02
Computer, Commis, Electronics	0.2
Power	0.3
Stereo Camera, Laser Rangefinder	0.3
Propulsion	1.2
ADCS	0.4
Payload	0.6
Total	3.0

Smartphone-class electronics, sensors

Trajectory Optimization

- Distance travelled per hop has a huge impact on the number of hops possible and the total distance covered.
- Fig. for 1 Kg of propellant with Isp 350s on Moon and Mars.

