

# Development of the Lunar Polar Hydrogen Mapper Mission

#### Craig Hardgrove: Principal Investigator, Assistant Professor, ASU

ISSC 2018 – Caltech, Pasadena CA

May 7, 2018



ARIZONA STATE UNIVERSITY



# LunaH-Map Mission Overview



- NASA SMD SIMPLEx 2015 mission led by ASU
- 6U+ CubeSat form factor to launch on SLS EM-1
- Science Objective: Map hydrogen enrichments within PSRs at the lunar south pole
- Tech Objectives: Demonstrate neutron spectroscopy, deep space operations & propulsion from a small sat





# Neutron Detection Physics







# Polar Volatile Distributions from Neutron Spectroscopy





- Neutron measurements are sensitive to **bulk** hydrogen distributions at 1 meter depth
- Uncollimated neutron detector 'footprints' are approximately 1½ times orbital altitude
  - Lunar hydrogen abundances within PSRs broadly ranging from 200 ppm up to almost 40 wt% could be consistent with LPNS data depending on spatial distribution, extent of coverage, and burial depth [Lawrence et al 2006].

\*Feldman et al., Science, 281, 1496, 1998



# Lunar Neutron Spectroscopy





to km<sup>2</sup> pixels

Pixon-based reconstruction of LPNS data (Elphic et al 2007) reveals high WEH abundances in Cabeus (near 1 wt%) and lower abundances in Shoemaker, Haworth, and Faustini (~0.3 wt%) Analysis of LEND data (Sanin et al 2017) reveals higher WEH abundances (~0.5 wt%) in south polar craters Shoemaker, Haworth, and Faustini



# Lunar Neutron Spectroscopy





Pixon-based reconstruction of LPNS data (Elphic et al 2007) reveals high WEH abundances in Cabeus (near 1 wt%) and lower abundances in Shoemaker, Haworth, and Faustini (~0.3 wt%)



Dept

Figure 1 Map of current day ice stability depth from Siegler et al [2015] as used in constraint map development



Analysis of LEND data (Sanin et al 2017) reveals higher WEH abundances (~0.5 wt%) in south polar craters Shoemaker, Haworth, and Faustini



# Neutron Measurements of the Moon

- Low-altitude (< 20 km) uncollimated measurements of lunar neutrons can be used to:
  - Determine the bulk hydrogen content and depth within PSRs (Diameter < ~35km)</li>
- These data can be used to constrain:
  - Sources and sinks for polar volatiles

- LunaH-Map measures only epithermal neutrons:
  - Using a large (200 cm<sup>2</sup>) detector array
  - To constrain abundance of hydrogen within PSRs
  - To provide complementary data to LP-NS and LRO LEND





# FAN Neutron Energy Spectrum

![](_page_8_Figure_2.jpeg)

Increased hydrogen suppresses epithermal neutrons (E > 0.4 eV) and increases thermal neutrons (E < 0.4 eV)

LunaH-Map's signal is the difference between **dry** epithermal count rate and **enriched** epithermal count rate

![](_page_8_Picture_5.jpeg)

#### Fractional Epithermal Neutron Reduction with wt. % WEH

![](_page_9_Figure_1.jpeg)

![](_page_9_Picture_2.jpeg)

Increased hydrogen suppresses epithermal neutrons (E > 0.4 eV) and increases thermal neutrons (E < 0.4 eV)

LunaH-Map's signal is the difference between **dry** epithermal count rate and **enriched** epithermal count rate

![](_page_9_Picture_5.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_10_Picture_1.jpeg)

Increased hydrogen suppresses epithermal neutrons (E > 0.4 eV) and increases thermal neutrons (E < 0.4 eV)

LunaH-Map's signal is the difference between **dry** epithermal count rate and **enriched** epithermal count rate

![](_page_10_Picture_4.jpeg)

# Miniature Neutron Spectrometer

![](_page_11_Picture_1.jpeg)

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

# Mini-NS EDU

![](_page_12_Picture_1.jpeg)

![](_page_12_Picture_2.jpeg)

![](_page_12_Figure_3.jpeg)

Test results from single EDU module exposed to Na-22 and AmBe

![](_page_12_Picture_5.jpeg)

# Mini-NS Flight Unit and Calibration

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

- Flight instrument chassis
  machined for fit checks in
  spacecraft EDU at ASU
- Mini-NS Flight Unit delivery in early summer 2017
- Mini-NS Flight Unit calibration at Los Alamos National Lab Neutron Free In-Air (NFIA) facility in late summer

![](_page_13_Picture_6.jpeg)

![](_page_14_Picture_0.jpeg)

# Trajectory Design

![](_page_14_Picture_2.jpeg)

| Period                       | 4.76 hour                     |  |
|------------------------------|-------------------------------|--|
| Aposelene<br>Altitude        | 3150 km                       |  |
| Periselene<br>Altitude       | RAAN<br>dependent<br>15-25 km |  |
| Inclination                  | 90°                           |  |
| Argument of<br>Periselene    | 273.5°                        |  |
| Genova, A. L. and Dunham, D. |                               |  |

W. (2017) 27<sup>th</sup> AAS/AIAA Space Flight Mechanics Meeting 17-456.

![](_page_14_Picture_5.jpeg)

#### Science Phase

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

| Period                                                                                                    | 4.76 hour                     |  |
|-----------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Aposelene<br>Altitude                                                                                     | 3150 km                       |  |
| Periselene<br>Altitude                                                                                    | RAAN<br>dependent<br>15-25 km |  |
| Inclination                                                                                               | 90°                           |  |
| Argument of<br>Periselene                                                                                 | 273.5°                        |  |
| Genova, A. L. and Dunham, D.<br>W. (2017) 27 <sup>th</sup> AAS/AIAA Space<br>Flight Mechanics Meeting 17- |                               |  |

456.

![](_page_15_Picture_4.jpeg)

## Science Phase

Lunar South Pole →

> ≈11 km Min Height Above crater floor of Shackleton

> > Crater floor of Shackleton {4 km deep}

![](_page_17_Picture_0.jpeg)

## LunaH-Map Sensitivity

![](_page_17_Figure_2.jpeg)

Enrichments of 600 ppm +/- 120 ppm WEH are detectable for ~94% of the surface poleward of 85°S in spatial bins of 15km x 15km.

![](_page_17_Picture_4.jpeg)

![](_page_18_Picture_0.jpeg)

## South Polar Volatile Mapping

![](_page_18_Figure_2.jpeg)

Simulations of maps made from 15x3150km science orbit. Basemap combines LEND high H regions (Sanin et al., 2017) and the Shackleton enrichment from pixon-reconstructed LPNS data (Elphic et al, 2007) to illustrate the type of map LunaH-Map will be able to create.

![](_page_18_Picture_4.jpeg)

# LunaH-Map Spacecraft

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

#### 1:1 3D Printed Model of LunaH-Map Flight System

Single Axis

Solar Array Drive

![](_page_19_Picture_4.jpeg)

#### Spacecraft Specs

| Dimensions:<br>(stowed) | 10x20x30cm                         |  |
|-------------------------|------------------------------------|--|
| Mass                    | 14 kg                              |  |
| Power                   | 90W BOL<br>56W-hr Battery          |  |
| Propulsion              | Busek BIT-3 Ion<br>Thruster        |  |
| Comm.                   | JPL Iris Deep Space<br>Transponder |  |
| C&DH /<br>GN&C          | BCT XB1-50                         |  |
|                         |                                    |  |

![](_page_20_Figure_2.jpeg)

![](_page_21_Picture_0.jpeg)

#### Propulsion

![](_page_21_Picture_2.jpeg)

![](_page_21_Picture_3.jpeg)

- Busek BIT-3 ion thruster
- Iodine propellant
- 10° gimbal for momentum management

![](_page_21_Picture_7.jpeg)

![](_page_22_Picture_0.jpeg)

#### Propulsion

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

- Busek BIT-3 ion thruster
- Iodine propellant
- 10° gimbal for momentum management

![](_page_22_Picture_7.jpeg)

![](_page_23_Picture_0.jpeg)

# PC1 – Instrument Qualification

During first lunar flyby, LunaH-Map will observe the lunar neutron count rate of ~3.15 cps at the PC-1 flyby altitude of ~2800 km.

LunaH-Map is below 3000 km altitude for >30 minutes. The predicted epithermal neutron count rate of 3.15 cps can be measured to +/-0.04 cps.

Demonstrate Mini-NS operation in the <u>lunar</u> environment

![](_page_23_Figure_5.jpeg)

![](_page_23_Picture_6.jpeg)

## Day in the Life - Science

![](_page_24_Picture_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

# Mission/Science Operations

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

- Co-located in ASU's shared operations facility
- JPL AMMOS/AMPCS for uplink and downlink
- Science/instrument ops heritage from MER, LROC, and MSL
- Science/instrument ops development coincident with Mars 2020 and Psyche missions

![](_page_25_Picture_7.jpeg)

# Road to Launch

- Critical Design Review Completed June 29, 2017
- Phase 2 Safety Review August 8, 2017
- Enter Assembly, Integration, and Test Q4 2017
  - AI&T Review/Workshop with review board
- Launch SLS EM-1, December 2019

| LunaH-Map Program Milestones to Date |                     |                     |  |  |
|--------------------------------------|---------------------|---------------------|--|--|
| IAA                                  | 11 December<br>2015 | Δ-IAA REQUIRED      |  |  |
| Δ-ΙΑΑ                                | 24 February 2016    | PASSED with<br>RFAs |  |  |
| SRR                                  | 8 April 2016        | PASSED with<br>RFAs |  |  |
| I-PDR                                | 9 June 2016         | PASSED with<br>RFAs |  |  |
| Phase 1 SR                           | 21 June 2016        | PASSED              |  |  |
| M-PDR                                | 25 July 2016        | PASSED with<br>RFAs |  |  |
| CDR                                  | 29 June 2017        | COMPLETED           |  |  |
| Phase 2 SR                           | 11 Nov 2017         | COMPLETED           |  |  |
| Integration<br>Workshop              | 8 Dec 2017          | COMPLETED           |  |  |

Review Board Members: Dr. Andrew Klesh, Jet Propulsion Laboratory (Review Board Chair), Dr. Thomas Werne, JPL, Dr. Travis Imken, JPL, Dr. Juergen Mueller, JPL, Dr. Eric Gustafson, JPL, Dr. Thomas Prettyman, Planetary Sciences Institute, Dr. James Bell, Arizona State University, Dr. Jordi Puig-Suari, California Polytechnic State University, Richard Elphic, NASA Ames.

![](_page_26_Picture_8.jpeg)

Twitter: @lunahmap

lunahmap.asu.edu/foldyourown\_lunahmap.pdf