

Use of Shape Memory Alloy Actuators for Precise Pointing on Interplanetary Small Satellites and CubeSats

Nikhil Sonawane, Jekanthan Thangavelautham* Space and Terrestrial Robotic Exploration Laboratory School of Earth and Space Exploration Arizona State University

Outline

- Motivation
- Challenges
- Actuator Design
- Prototype Experiments
- Discussion
- Conclusions

Motivation

Low-cost Exploration

Space Power

Exo-planet Observation Interplanetary Communications

• New and emerging technology areas that may have transformative impact

Precise pointing critical/enabling for these applications

Next Generation Space Telescopes

- Exoplanet search, finding Earth 2.0s
- To see further into our past
- Planetary science, asteroid observation

Alma Observatory

NASA Goddard LUVOIR

Rise of telescope arrays.

Massive Arrays

(NRL Concept, 2014)

• Applications spanning space power to astronomy, planetary science, earth observation, communications.

A big leap in capabilities, but with big challenges.

TAREA DE LA CONTREX

Reaction Wheels & Harmonic Drives

- The standard for precision pointing of spacecraft
- Proven track-record from space telescopes to outerplanetary missions.

Important challenges in using on them massive array.

The Challenges with Reaction Wheels

- Use of propellant for desaturation in deep space
- Major loss in functionality due to component failures
- Dry lubrication
- Relatively hard to manufacture
- Lacks scalability, extensibility
- Precision pointing and large \rightarrow limited life

Piezo-electric Actuators

- Apply electrical current to excite piezo-electric crystal resulting in contraction.
- Proposed for corrective pointing of CubeSat exoplanet telescopes, JPL/MIT Asteria.

(Smith et al., 2016), (Seager et al., 2012)

(Bilton & Dubowsky, 2012), (Sonawane & Thangavelautham, 2016)

• Arrays of linear actuators used to 'shape' telescope mirror in space.

Mirror Module

(Bilton & Dubowsky, 2012), (Sonawane & Thangavelautham, 2016)

• Enables both redundancy and precision. One can be traded with the other.

(Bilton & Dubowsky, 2012), (Sonawane & Thangavelautham, 2016)

• Even if one or a few actuators are damaged, the shape degrades gradually.

(Bilton & Dubowsky, 2012), (Sonawane & Thangavelautham, 2016)

• Even if one or a few actuators are damaged, the shape degrades gradually.

(Bilton & Dubowsky, 2012), (Sonawane & Thangavelautham, 2016)

- Modular and scalable
- Decentralized control
- Extensible
- Resized on demand
- Graceful degradation

Actuator Needs

- Metal, solid-state
- Few components
- Reduced jitter or provide compensation
- Avoids lubrication, minimizes wear and tear
- Handle millions of cycles
- Achieve 1 arcsecond or less.
- Simple to assemble, low-cost
- Can be mass-produced

Shape Memory Alloys (SMAs)

- Alloys that can take on one of several crystalline states.
- State transition through change in temperature.
- States can be programmed/reprogrammed.
- Popularized as memory metal eye glasses

Shape Memory Alloys

Shape Memory Effect

Current and Proposed Technology

	APM technology	Power	Mass	Cost	Specific work ratio	Operating temperature
Gimbal						
based 2	Stepper					
axis	motor	3.9 W	2.7 kg	high	low	-40 to 60 °C
Gimbal						
based 1	Stepper					
axis	motor	27.4 W	1.8 kg	high	low	-50 to 105 °C
	stepper					
KARMA5	motor	25 W	10 kg	high	low	-75 to 170 °C
	stepper					
SADM	motor	5 W	5 kg	high	low	-45 to 75 °C
Proposed						
APM	SMA	4 W	0.5 kg	low	high	-100 to 200 °C

SMA based Linear actuators

Latching Mechanism

Extended position

Contracted position)

SMAs already being used in space.

SMA Characterization

DC power source connected to resistor controls SMA

Performance Analysis

• Heat from resistor, $I^2R(\Delta t)$ drives SMA expansion due to phase transition. Some stochasticity.

SMA Design Pathway

- Wire instead of springs handles higher loads for less input power
- SMA wire extensions capped at 4% enabling a million cycle repeatability.
 - Greater extension, 5-8 % results in 1,000 cycles or less.
- Lever used to increase effective extension length
- Latching used to conserve power

Design decisions to maximize life and reliability.

Prototype Design

SMA Latching Mechanism

- SMA contracts and unlatches from lock-teeth
- Linear actuator free to move.

SMA Linear Lever Actuator Design

- SMA contracts
- Mechanical lever multiplies extension
- Rail linearizes extension

SMA Latching Mechanism

• SMA expands and latches linear actuator extension.

Experimental Setup

Experiment System

Actuator Operation

- (a) Latched
- (b) Unlatched
- (c) Zeroing of antenna,
- (d) Stroke set (with overshoot)
- (e) Settling time
- (f) Lock

Video Demonstration

Calibration

- Takes 1 sec to position an actuator. Parallel ops.
- Further analysis need to speed-up performance.

Experiment Repeatability

- Optimal latching delay time found show no build up in angular error over 10 cycles.
- Extended experiments being performed to 100 and 1000 cycles.

Conclusions

- A prototype SMA linear actuation based pointing mechanism developed
 - Solid-state
 - Low-cost, built entirely of commercial, easy to obtain components.
 - Simple design potential for assembly in space.
- Laboratory prototype achieves 1 degree precision We have designs to achieve 0.1 arcsecond
- Excellent repeatability 1 million cycles (theory)

Future Work

- Demonstrate 1 arcsecond prototype
- Further simplify design for in-space assembly
- Thermal-vac test prototype
- Plans for balloon followed by CubeSat demonstrator mission

Thank you !

Questions ?