

Solar Thermal Propulsion for Interplanetary Small Satellites

Salil Rabade, Nathan Barba, Laurence Garvie, Jekan Thangavelautham School of Earth and Space Exploration Arizona State University

Motivation – Interplanetary Exploration

Planetary Surface Exploration/Prospecting

[Dubowsky et al., 2006; Thangavelautham et al., 2008]

Need for a Sustainable Propulsion System

- High or good-enough delta V
- Long storage life, minimal thermal footprint
- High thrust particularly for capture burns.
- Low-storage risk, safety
- Propellants that are compatible with ISRU methods
- Ease in refueling

Water Steam vs. Water Electrolysis

- We are pursuing both approaches.
- Focus here will be water steam and for context we will compare against water electrolysis

Water Steam Propulsion

- Properties of steam well understood
 - Minimal storage risk
- Isp up to 200 s
 - Generated from super heated steam, +1500 C
- Use of carbon nanoparticles to heat the water using solar thermal concentrator.
 - Free power sources, up to 99 % of sunlight can be converted to heat.

Steam Propulsion

- Achieve high temperatures with low-fidelity concentrator
- Compact, solid-state heating platform
- Comparably high thrust force compared to electrical propulsion methods.

Steam Propulsion

- Comparable in Isp to mono-props
- Compatible with ISRU methods to extract water from Deimos/Phobos, asteroids, Moon.
- Not a solution for Mars ISRU

Steam Propulsion

- Steam propulsion is not a new concept.
- Old concepts required fission reactors, were meant to be large tug-boats of cis-lunar space.

Steam Generation Using Carbon Nanoparticles

Source: "Solar Vapor Generation Enabled by Nanoparticles Halas, et al. 2013

- Concentrated light absorbed due to sub-wavelength geometry.
- Particles resonate, collect and transfer energy as heat.

Steam Generation Using Carbon Nanoparticles

- Carbon Black N115, 82-86 % absorptivity
- Vanta Black, 99.5 % absorptivity

Carbon Black N115

Vanta Black

Steam Generation Using Carbon Nanoparticles

- These nanoparticles may naturally occur on asteroids.
- Heating occurs an molecular scale. Very precise and local.
- Some of this maybe a challenge for in spacepropulsion.

Laboratory Experiments

Initial Tests

Concentrator Test Results

- Time for wood to catch fire: ~5-7 seconds
- Time for 15 ml of distilled water to boil: 10 minutes got upto 100°C
- Steam was evident ~5.5min

Early Results with Carbon Nanoparticles

• Solar to heat conversion efficiency: 82 %

Condition	Time to Boil	Deviation
Distill Water	600 sec	10 %
Distill Water + Nanoparticles	40 sec	15 %

• Up to 15x shorter time to boil.

Early Results with Carbon Nanoparticles

Solar Thermal Steam Propulsion Concept

Components	Mass (kg)	Volume (L)
Propellant	7	7
Propulsion Dry Mass	3	1
Comms & ACDS	2	1
Structure	1	0.5
Power	1	0.5

- Aggressive, optimized design.
- Delta V = 1400 m/s vs. 2500 m/s for Photovoltaic Electrolysis.

Solar Thermal Spacecraft Concept

Solar Thermal Spacecraft Concept

PV Electrolysis Spacecraft Concept

System Performance

For short pulses	
$I_{sp} = 360s$	

- For a 6U CubeSat
 - Total Mass 14 kg
 - Dry Mass 4.5 kg
 - $\Delta V = 4000 \text{ m/s}$

То	Required ∆V
Low Lunar Orbit	4040 m/s
EML – 1	3770 m/s
EML - 2	3430 m/s

Sutton, George P., and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion Elements. 8th ed. Wiley. 301-305. Print.

PV Electrolysis Spacecraft Concept

- Concept developed based on currently available state of the art CubeSat components
- PEM Electrolyzer with 85-90 % conversion efficiency
- Dual-body design, lower stage is centrifuge to separate water from the propellants.

System Operation

Lower segment rotates to separate water from reactants

General Case & Electrolysis Comparison

Discussion

- Overall a steam propulsion system is simpler, but at the cost of reduced performance by half
- Well aligned with a water-based cis-lunar economy concept.
- Water can be with impurities, particularly sulfur, carbon monoxide
- Easier adoption, until advancements make electrolysis options more practical.

Design, Build, Test, Fly...

SpaceTREx Team

Thank You!