

Enabling University-Operated Ground Support Development with the Morehead State University 21 m Ground Station

Interplanetary SmallSat Workshop May 1, 2017

Jeff Kruth, Ben Malphrus (MSU) Jay Wyatt, Tim Pham (JPL)

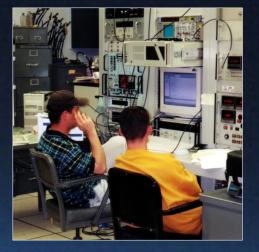
In Partnership with Jet Propulsion Laboratory California Institute of Technology

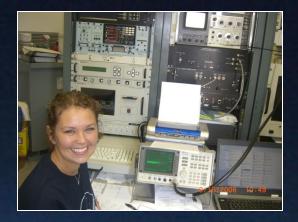
Why Morehead State?

- Quiet RFI Environment in Eastern Kentucky (Southeastern US)
- 21 m Ground Station (one of only approx. 12 in the US large enough)
- Staff Experienced in Mission Operations
- Talented Engineers and Scientists
- Talented Students

21 Meter Space Tracking Antenna

Specifications by MSU faculty with NASA assistance
Dual Purpose Instrument


•Ground Station for Smallsats


Radio Telescope for Astronomy Research

Funded \$3.4 M -a variety of sources- Morehead State, Federal and State Funds, KSTC, NASA
Built and Installed by VertexRSI (General Dynamics)
Feeds Designed and built by VertexRSI, APL, and MSU
Operational in 2006

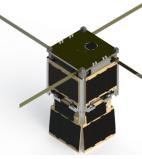
Space Projects Create Opportunities for Students

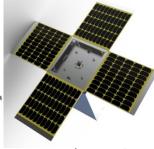
- Undergraduate Research Experiences
- Instrumentation Experience
- Engineering Design
- Observational Astrophysics Research
- Ground Ops (TT&C)
- Project Management Experience
- Systems-level Engineering Experience

KySat-1 Secondary

on NASA's Glory

Mission


Morehead State SmallSat Missions

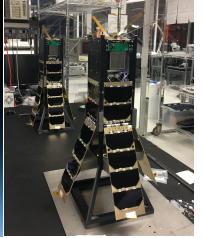

- 5 Satellites Launched
 - 1U,2U,3U CubeSats
- Microsat Subsystems
 - PocketQubs
- 6U Bus in Development
- Interplanetary Mission
- Variety of Customers

Lunar IceCube is a CubeSat mission designed to prospect for water ice other lunar volatiles from lunar orbit. The mission was selected under NASA's NextSTEP to fly on EM-1. Lunar IceCube is led by Morehead State and includes partners NASA GSFC, JPL, Busek, and Vermont Tech

KySat-2 Launched in October 2013

UniSat-5 w/ Univ. of Roma-GAUSS launched 2014

T-LogoQube (Eagle-1) Launched in October 2013



CXBN Launched in 2012

Standard MSU 3-U Bus

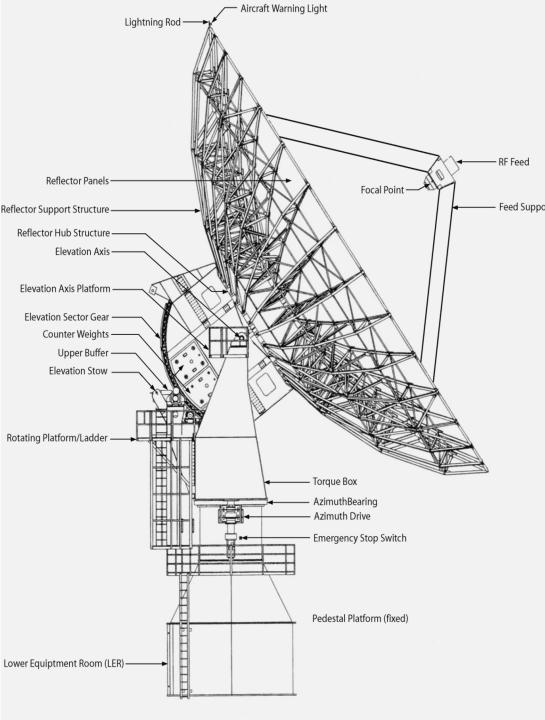
CXBN-2 Launched April 2017

21 M Operations

- Satellite Ground Station for Ground Ops/Mission Supportfor our SmallSat Missions and Others
- Radio Telescope Mode for Research in Astrophysics
- Test-Bed for Experimental Communication Systems for Small Satellite Systems

21 M Ground Station Mission Support

Support SmallSats Missions in:


- LEO
- MEO
- GEO
- Lunar
- Near-by Asteroids
- Approaching Comets

Missions Operations For:

Planet Labs Dove Constellation
LRO (Mini-RF Comms)
ISEE-3 Reboot

- •CubeSats and MicroSats:
 - CXBN, KySat-2, Firefly, T-LogoQube, Eagle-2, UniSat-5, EduSat, UniSat-6, SERPENS

21 M Overview

Parameter	Measured Values			
Axis Slew Velocity				
Azimuth	> 3.0 °/sec minimum			
Elevation	> 1.6 °/sec minimum			
Polarization	> 0.7 °/sec minimum			
Axis Acceleration				
Azimuth	1.0 °/sec ²			
Elevation	0.6 °/sec ²			
Travel Range				
Azimuth	± 269.8°			
Elevation	1.0° to 90.3°			
Polarization Range	± 90°			
Pointing Accuracy	0.005° RMS			
Tracking Accuracy	0.0004º RMS			
Aperture Efficiency, η (L/Ku)	0.653/0.563			
Surface Tolerance @ 35 mph wind	< 0.020" RMS			

Interplanetary SmallSat Ground Ops: Morehead State 21 M Ground Station- Current State

- •Operational Experience: LRO, ISEE-3, Planet Labs, KySpace
- •High Gain, Pointing and Tracking Accuracy
- •Station is ideal for Inner Solar System Experiments
- •Full Remote Control of All Systems
- X-Band Downlink Currently- Uplink capability planned
- NASA NEN Compatible
- Software-Defined TT&C Processor (SoftFEP) and High Data Rate Digitizer for Experimental Missions
- Extensive use of Student Operators (STEM Engagement)
- Plans for DSN Compatibility Upgrades with JPL assistance

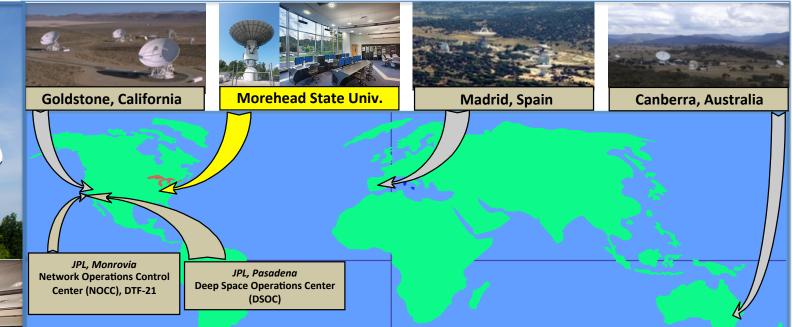
Morehead State University

21 M Ground Station

ISEE-3 Carrier During Lunar Fly-by Sept 2014

Student Operators in the MSU 21 M LER

Student Operators in the MSU Mission Ops Center


MSU 21 Meter Current RF Capabilities

Radio Band	Frequency	Gain	Uses of Band		
	Range				
UHF	400-480 MHz	30 dBi	Satellite Telecom		
S-Band	2.2-2.5 GHz	52.8 dBi	Both Satellite Telecom and		
			Radio Astronomy		
X-Band	7.0-7.8 GHz	62.0 dBi	Primarily Satellite Telecom		
Ku-Band	11.2-12.7 GHz	65.50 dBi	Primarily Satellite Telecom		

Morehead State University 21m Upgrade to DSN Compatibility

Objective:

 Demonstrate a cost-effective process for expanding DSN capabilities by utilizing non-NASA assets to provide communication and navigation services to small spacecraft missions to the Moon and inner solar system, thereby enabling interplanetary research with small spacecraft platforms.

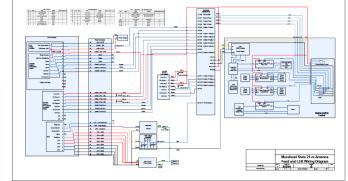
Benefits:

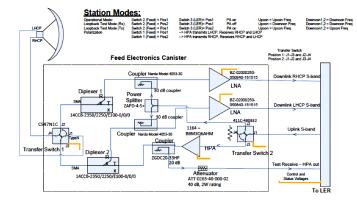
- Serves as a test-case to define a path for other non-NASA ground stations to provide auxiliary deep space navigation and tracking support for small spacecraft missions.
- Develops an operational capability to support EM-1 Cubesat missions in the 2018 timeframe

Technical Approach:

- Develop and implement a strategy to transfer Deep Space Network (DSN) processes and protocols to the MSU 21 m antenna system and to upgrade the antenna hardware and software systems to enable integration into the DSN as an auxiliary station to support small spacecraft missions.
- The project is focused on the implementation of deep space communications, tracking and navigation techniques as well as adoption of CCSDS data interface standards such as the Space-link Extension service.
- Implement systems upgrades, conduct tests/demonstrations, and transition to an operational capability.

Contacts

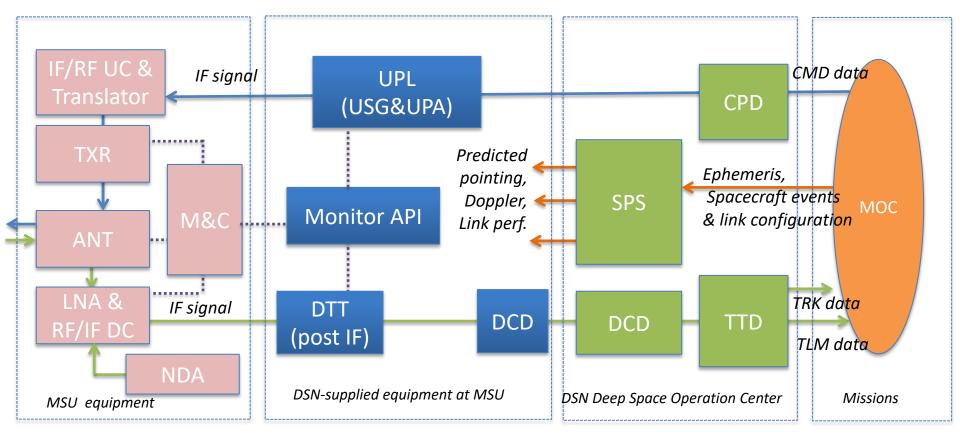

Jason Crusan NASA HQ AES Sponsor jason.crusan@nasa.gov


Ben Malphrus Morehead State Univ. <u>b.malphrus@morehead-st.edu</u>

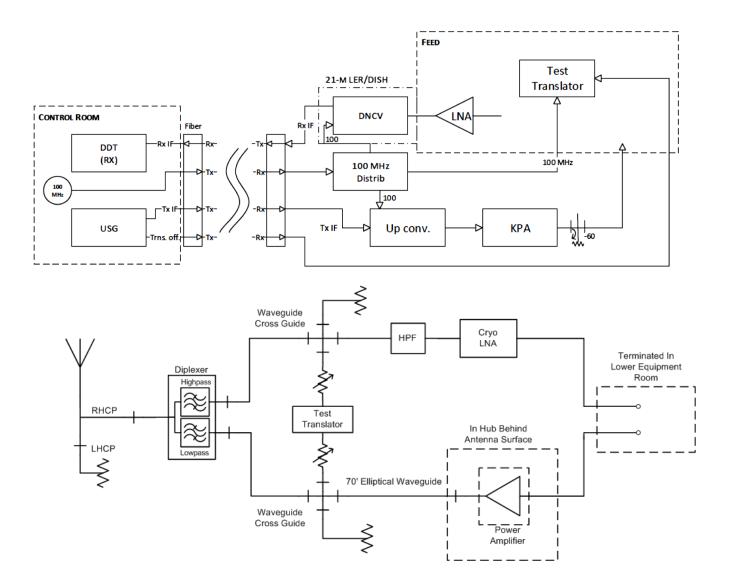
Jay Wyatt NASA Jet Propulsion Lab <u>e.jay.wyatt@jpl..nasa.gov</u>

Enabling Interplanetary Smallsat Ground Support- Toward DSN Compatibility

- Is Extremely Challenging:
- Only Three Stations in the World and Some (ESA and JAXA providing Cross Support)
- No Commercial Off-the-Shelf Equipment Exists
 - No Tracking Receivers
 - No Telemetry Receivers
 - No Uplink Transmitters
 - No Data Collection Systems
 - GPS Not Good Enough for a Time Standard
 - Atomic Clocks Not Good Enough for a Time Standard
- Existing X-Band Feed Not Adequate
- IF Processors Not Adequate
- All Equipment Must Be Custom Built
- IT and Physical Security Must Be Upgraded

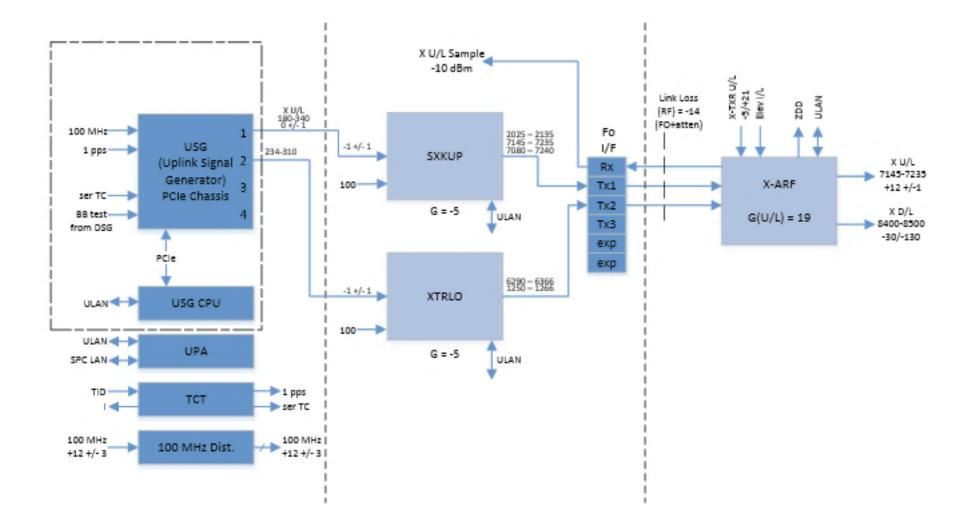


New System Architecture Required


System block diagram

Becoming a DSN-Compatible Station

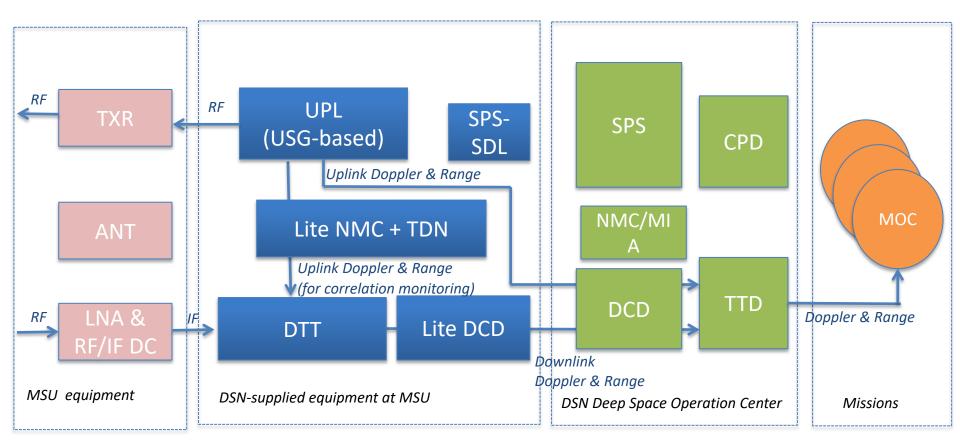
New X-Band Feed Required with Cryogenic LNA and High Power TX Capability



Becoming a DSN-Compatible Station

Command Capabilities Required

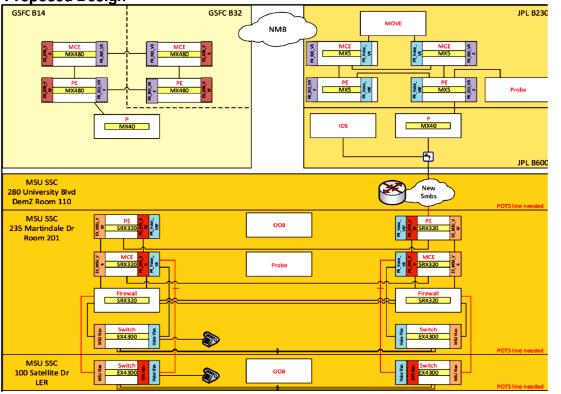
- USG-Based B6E/UPL
- 1 KW Power Amplifier

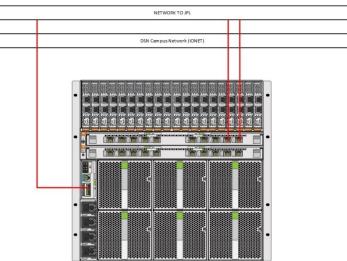


Tracking Capabilities

Tracking and Ranging Capabilities Required Additional Equipment and Processes

- UPL (Also for Commanding)
- NMC (Very Lite Version)
- DTT (Also for Telemetry Down)

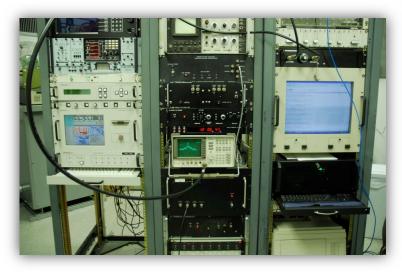

Becoming a DSN Station



High Security IT and Network Connection Required

- Independent Network
- Architecture Designed with JPL and CSO
- Behind NASA Firewall
- Designed by NASA CSO
- Direct Connection to the NASA IoNet

Proposed Design



Becoming a DSN-Compatible Station

Status of Project

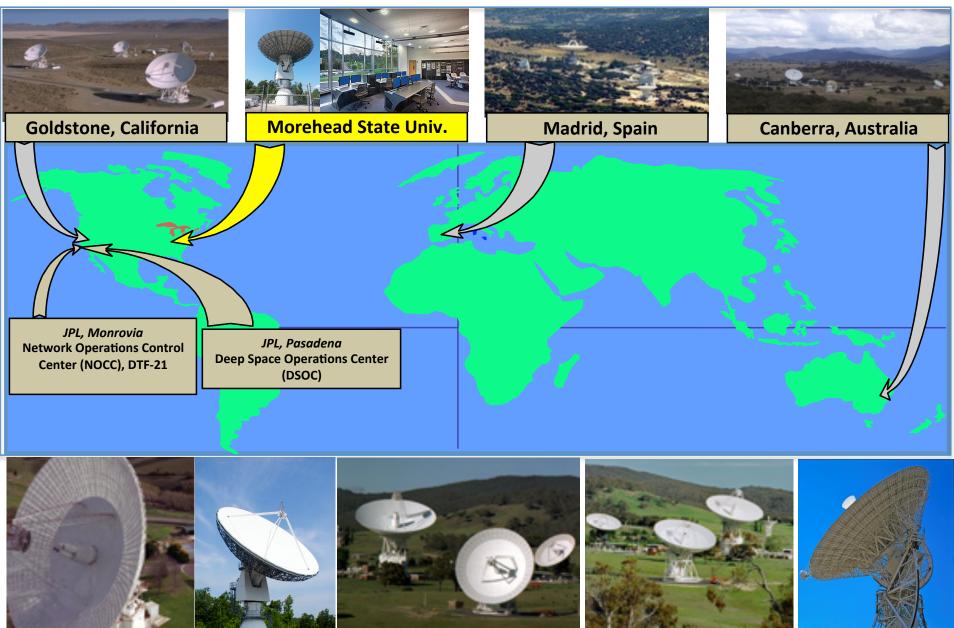
- System Architecture Design Complete
- DSN "Lite" Equipment in Fabrication at MSU and JPL
- Hydrogen MASER in Operation (on semipermanent Loan from MIT)
- X-Band Feed Designed and in Fabrication
- Cryogenic LNA Under Test
- Antenna Control Systems Tested

Duration (s)	Detector reading	Measured Allan Deviation	REquired
1	4.50E-013	3.18198E-13	3.30E-13
10	6.00E-014	4.24264E-14	1.00E-13
100	2.00E-014	1.41421E-14	3.30E-14

Expected 21m Performance

NAS

Performance Measure	Current Values	Post-Upgraded Targets		
X-Band Frequency Range	7.0 – 7.8 GHz	7.0 – 8.5 GHz		
LNA Temperature	70 K	<20 K <100 K 62.7 dBi (@8.4 GHz)		
System Temperature T _{sys}	215 K			
Antenna Gain	62.0 dBi (@7.7 GHz)			
System Noise Spectral Density	-175 dBm/Hz	<-178 dBm/Hz		
G/T at 5° Elevation	37.5 dBi/K	40.4 dBi/K		
Time Standard	GPS (40-ns)	Cesium (2ns/day)		
SLE Compliant	No	Yes		
CCSDS Capable	No	Yes		

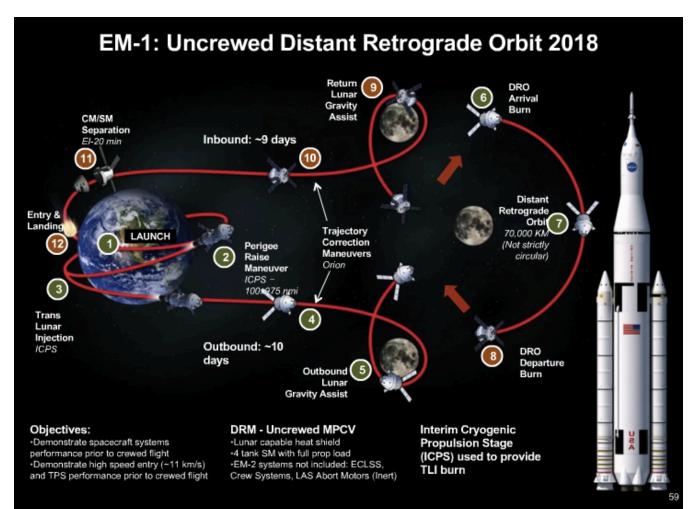


DSS-17

DSS-17 Next Steps

Critical Milestones

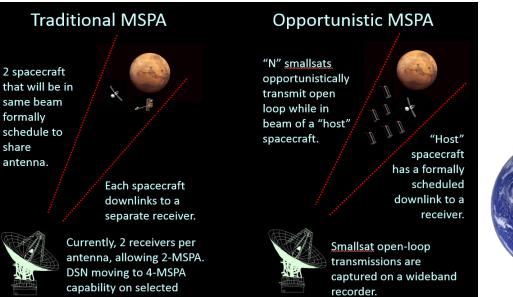
ΔSRR	loNet Connection	Downlink Demo	Uplink Demo	Ranging Demo	ORR	Operational	Mission Ops	Mission Duration	Project Closure
01/15/201	6 06/30/2017	12/15/2017	01/15/2018	03/15/2018	06/30/2018	10/15/2018	10/15/2018	EM-1 CubeSats Duration	EM-1 CubeSats Closure


Becoming a DSN Compatible Station

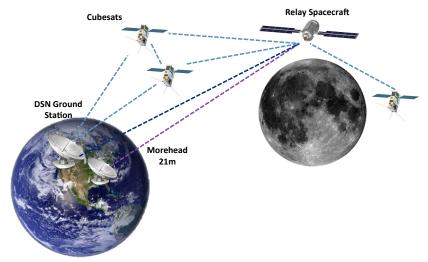
Provide Support for NASA EM-1 CubeSats

Lunar IceCube Lunar Flashlight LunaH Map

NEA Scout Biosentinel



antennas.


Future of DSS-17

Possible Extensions and Adaptations

- Multiple Spacecraft per Aperture (MSPA) and Opportunistic MSPA
- Delay/Disruption Tolerant Networking

Support for Space Networking

