

Integrated X-band Communication Antenna and Solar Array for Interplanetary CubeSats

Akshay Choudhari

Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory School of Earth and Space Exploration Arizona State University

akshay.choudhari@asu.edu

Alessandra Babuscia

NASA Jet Propulsion Laboratory (JPL), Pasadena, California

alessandra.babuscia@jpl.nasa.gov

Jekan Thangavelautham

SpaceTREx Laboratory School of Earth and Space Exploration Arizona State University

jekan@asu.edu

Hybrid solar array and reflectarray

- HaWK Solar Arrays
 - Dual Gimbals
 - Reaction wheel solar desaturation
 - Variable modes
- X-Band Reflect Array
 - Hybrid on back of HaWK array
- Similar concept ISARA (Kaband)

Pros and Cons

Pros

- Reduced mass and after deployment volume
- Reduced number of deployments
- Reduced effective surface area
- Simultaneous operation of solar array and antenna
- Redundancy
- Reduced Comms link limitations during tumbling
- Improvement in antenna gain* * – assuming both arrays can be synchronized

Cons

- Solar array and Reflectarray integration process complexity
- Two feeds required
- Complexity of synchronizing two Reflectarray signals (and feeds)

Longer communication link time with CubeSat

Properties

Specification	X-band reflectarray
Mass	0.5 kg
Gain	31.69 dB (single array) 34.7 dB (double array)

1 - estimated mass of only electronics (no chassis)

2 - assuming both arrays can be synchronized

High gain X-band Reflectarray NASA JPL (MarCO)

Specification	MMA E-HaWK (3 panels/ wing)
Mass	0.85 kg
Power	44 W OAP

Total area of 12U x 2U shared by Reflectarray and solar panels

Devils LOGIC: Low Orbit Geothermal Imaging CubeSat

- 6U CubeSat
- Hosted payload science mission to Phobos
 - Nominal Launch: Mars 2020
- 2 year mission life
 - Potential for extended mission (3 years)
- Thermal and visible camera payload
- Impulsive maneuver for Mars capture
 - 15+ flyby's achievable within 7 months
- 7 month science mission
 - Minimum of 5 flyby's science mission

LOGIC Deployed View

LOGIC - Communications Subsystem

- DSN compatibility
- EIRP 35 dB
- UHF relay (investigation in progress)

Link budget to Earth (X band)

Scenario (Date rate)	Distance (million km)	Downlink
Worst	300	6.4 kbps
Nominal	250	9.3 kbps
Best	200	14.5 kbps

Iris V2 X band Transponder

NASA JPL (MarCO)

Integrated (solar array and) X-band Reflectarray with Iris v2 for Interplanetary missions

Summary

- Reduced risk during complex maneuvers (aerobraking)
- Simultaneous solar array and comms operation -> Reduced comms blackout
- CubeSat Electra (UHF) payload -> proximity comms to existing Mars orbiter assets

LOGIC spacecraft with Phobos and Mars

