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¡ Cubesats are now becoming a new way to explore space. They are 
designed to be smaller, with high stowing efficiency, and they are 
fabricated at a lower cost and faster development schedule than 
traditional spacecraft. 

¡ As CubeSats are becoming a way to explore deep space in a more 
affordable way than traditional spacecraft, new needs emerge:
propulsion systems, thermal and radiation protection and 
telecommunication systems that can sustain a severely increased path 
loss.

¡ Different communication technologies are in development to approach 
this problem and to support interplanetary exploration with CubeSats
and small satellites.

¡ The inflatable antenna is unique as it provides an extremely high 
stowing efficiency (20: 1), low mass (<0.5 Kg), scalability and inflation 
with sublimating powder. 



¡ The original inflation concept was based on 
the idea of using sublimating powder to 
inflate into a parabolic shape.

¡ Many experiments with photogrammetry 
shown that when the membrane is inflate, 
the final shapes tends to deviate from a 
parabolaà the gas tends to inflate the 
structure into a sphere.

¡ A new design was conceived: the inflatable 
antenna is now a sphere with only a portion 
reflective, while the rest is transparent. 

¡ Challenges are:
§ Feed placement inside the reflector
§ Reflector size is reduced from 1 m to 71.3 cm 

in diameter.
§ Manufacturing

New design (Babuscia et al., 2017, IEEE)

Inflatable antenna original concept, (Babuscia,2014, IEEE)



¡ A single RHCP patch was selected as the feed 
for the inflatable reflector  ( Feed gain: 7.16 
dBi).

¡ Two reflector-feed configurations were 
considered and evaluated with TICRA GRASP:
§ The first design prioritized gain maximizationàGain 

is a function of both feed placement and reflector 
diameter and is maximum when reflector diameter is 
71.3 cm and feed placement is 22 cm from the 
reflector. 

§ The second design constrained the feed placement so 
that the seam of the feed support structure was co-
located with the reflector seam for easier 
manufacturingàThe seam constraint caused feed 
placement to be a function of reflector diameter. 
Therefore, gain was only a function of reflector 
diameter and was maximum with a reflector of 81.9 
cm. 

¡ The first design was selected because of higher 
gain, lower sidelobes and the increased 
manufacturing complexity which is non-
consequential. .
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JPL Inflatable 19 Dec Pattern Estimated

Freq
GHz

N2 Pressure
PSI

Integrated
Gain dBi

3 dB
Beam Width

10 dB
Beam Width

3/10
Gain dBi

7.145 0.20 28.67 4.922 12.74 29.64

7.19 0.20 28.70 4.926 12.66 29.65

7.235 0.20 28.74 4.789 12.54 29.85

8.4 0.20 29.68 4.212 11.17 30.93

8.45 0.20 29.28 4.081 11.06 31.15

8.5 0.20 28.82 4.214 11.12 30.94





¡ One of the critical aspects of the 
inflatable antenna design is its 
resistance to environmental 
phenomena, especially 
temperature fluctuations and 
micrometeoroids

¡ Rigidization would allow the 
antenna to still maintain its shape 
even in case of puncturing and loss 
of pressure in the membrane. 

¡ Rigidization of the antenna 
structure right after deployment to 
avoid these temperature-driven 
shape fluctuations. 

¡ During this past year, the first 
attempt to rigidize the entire 
antenna shape was carried on and 
tested at Arizona State University. 
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¡ Test results showed that the inflated antenna is controllable with state of the art 
reaction wheel systems for CubeSats.

¡ The disturbances induced on the system by the oscillations of the antenna 
coupled with a flexible material were found to be negligible, and therefore 
compatible with foreseen mission profiles and selected hardware configurations.

Stabilized behavior
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¡ This presentation describes the test results for the inflatable 
antenna for CubeSat project. 

¡ Measurements showed between 29.6-31.2 dBi gain depending 
on gain integration method, pressure, frequency. They do not 
take into account cable loss (approx. 1 dB)

¡ Progresses have also been made in the process of rigidizing 
the antenna to increase its lifetime. A full scale rigidization
experiment was carried on at Arizona State University. 

¡ Finally, an effort to investigate dynamic effects was carried on 
through tests at the JPL small satellite dynamic testbed. 

¡ Future work includes the fabrication and test of the 
deployment system
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