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Outline

• Deep-Space telecom needs
• Survey of CubeSat communication systems
• Overcoming large distances
• Navigation in deep space
• Iris Deep-Space Transponder
• Iris hardware design description
• Software Defined Radio heritage
• Comparison of deep-space transponders
• Planned deep-space CubeSat missions
• Future enhancements
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Deep-Space Telecom Needs
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Environment
High ionizing radiation

Clock stability over mission duration

Trajectory
Large free-space path loss 

Spacecraft dynamics effects

Navigation
Outside GPS signal range

No Earth’s magnetic fields

Image credit: NASA
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Environment
High ionizing radiation

Clock stability over mission duration

Trajectory
Large free-space path loss 

Spacecraft dynamics effects

Navigation
Outside GPS signal range

No Earth’s magnetic fields

Image credit: NASA

Radiometric Navigation 
Techniques

Large aperture antennas
Low receiver sensitivity

Space-grade parts
Coherent Transponder

An equally capable ground station to support deep-space exploration needs is required.
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AstroDev Li-1 ISIS TRXUV GomSpace AX100 Freewave FGRM

Bands VHF/UHF VHF/UHF VHF/UHF S-band

Mod FSK/GMSK BPSK FSK/MSK/GFSK/GMSK GFSK

Rates (baud) 9600 1200 – 9600 100 – 115,200 115,200 – 153,600

Survey of CubeSat Telecom Systems

5Survey of 215 CubeSats
* Data Source: B. Klofas, CubeSat Communications System Table, Version 13, 16 Aug 2016.

Deep-space frequency band 
limited to S, X, and Ka

PSK highly recommended by 
CCSDS for deep-space use

Higher power for farther 
distances necessary
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Overcoming Large Distances
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Iris V2.1 (62.5 bps)

To DSN-34m Aperture
Convolutional r=1/2, k=7
3dB Eb/No margin

NEN USHI01
13-m Aperture
3 kW X-Xmtr
EIRP: 116 dBm

Morehead State, KY
21-m Aperture

2 kW X-Xmtr*
EIRP: 125 dBm

UPLINK DOWNLINK

*2kW assumed for EIRP calculation
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Navigation in Deep Space
• Support radiometric navigation (ranging, Doppler track, VLBI) for orbit determination

– A carefully characterized Coherent Radio Transponder is necessary for turn-around ranging on the S/C
– Transmitter with special DOR tones for VLBI support (note: need two Earth stations to support)
– Earth Station equipped with navigation processing tools

• Stable reference clock for reduced navigational error
– Detect milli-Hertz variations within GHz signals.
– Long integration times with low frequency drift

• Stability required over round-trip light time (ranging)
• VLBI tracking times 8-12 hours.

• Overcome S/C dynamic effects
– Configurable carrier tracking loops for varying dynamics
– Pre-emphasis Doppler compensation from Earth station

7Image credit: NASA/DSN

1.E-15	

1.E-14	

1.E-13	

1.E-12	

1.E-11	

1.E-10	

1.E-09	

1	 10	 100	 1000	 10000	 100000	

Al
la
n	
De

vi
a*

on
	

Averaging	Time	(sec)	

GPS-Disciplined

Cesium Standard

Hydrogen-Maser

Typ. meas. window 
depending on round-

trip light time



Copyright ©2017 California Institute of Technology. Government Sponsorship Acknowledged.

Iris Deep-Space Transponder
• CubeSat/SmallSat compatible deep-space transponder
• ~0.5U volume (100.5 x 101.0 x 56.0 mm; transponder only)
• DSN/NEN-compatible X-band uplink/downlink (7.2GHz/8.4GHz)
• Software Defined Radio with Leon3-FT softcore processor
• Provides navigational support (Doppler, Ranging, DDOR)
• Modular hardware design for other frequency bands (UHF, S-

band, Ka-band)

8

V1.0

V2.0

V2.1

Iris Specification Units Iris V1.0
for INSPIRE

Iris V2.0
for MarCO

Iris V2.1
for SLS EM-1

Mass grams 450 (no chassis) 1210 (w/ UHF-Rx) < 1000 (X/X-only)

Volume U 0.46 0.77 (w/ UHF-Rx) 0.56

Bus Input Voltage Vdc 6.4 – 8.4 10.5 – 12.3 9.0 – 28.0

DC Power* W 13.0 35.0 33.7

RF Output Power* W 0.15 3.3 3.8

Receiver Noise Figure dB 5.0 – 6.0 3.5 3.5

Receiver Sensitivity dBm -135 @ 70Hz LBW -139 @ 70Hz LBW -151 @ 20Hz LBW

Uplink Data Rate† bps 1,000 62.5 & 1,000 62.5 – 8,000

Downlink Data Rate† bps 62.5 – 64,000 62.5 & 1,000 & 8,000 62.5 – 256,000

Telemetry Encoding Conv & Reed Solomon Turbo-1/6 only Conv, Reed Solomon,
Turbo 1/2, 1/3, 1/6

Radiation Tolerance krads N/A 15.0 TID 23.0 TID

S/C Interface 1 MHz SPI 1 MHz SPI 1 MHz SPI

* Nominal at ambient
† Subject to link margin
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Hardware Design Considerations
• Modular hardware built of slice elements

– NASA-STD-4009 (Space Telecom Radio System) guidelines
– Slices are interconnected with stacking connectors
– RF modules are generic to allow future designs with other 

frequency bands (UHF, S, Ka)
• Radiation tolerant up to 23 krads; no destructive SEL.
• EMI covers/shields to minimize radiated emissions
• Emphasized efficient thermal design
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Digital Processor

X-band Receiver

X-Band Exciter

X-Band LNA

X-Band Uplink
7145 – 7235 MHz

-130dBm to -70dBm

RX PLO

Pre-Select SAW Filter

VVA ADC

X-Band Downlink
8400 – 8500 MHz

3.8W BOL

X-Band SSPA

DDS Input 
Filter

TX PLO

DDS
DAC

I-DAC

Q-DAC

Xilinx Virtex-6 FPGA

50MHz 
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DDS 
Generator

Tracking 
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D/L DATA

Leon3FT Softcore 
ProcessorSRAM
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Top-Level Block Diagram
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Iris Transponder StackIris LNA

Iris SSPA

Modular MIC assembly
• Reduce noise figure 

by shortening cable 
length from antenna

• Separate gain cavities 
between LNA and Rx
(risk of oscillations)

Modular MIC assembly
• Provide superior heat 

dissipation path to 
structure/radiator

• Chip-and-wire assy to 
reduce losses for 
higher efficiency

Modular stacked-slice assembly

• Superheterodyne receiver with single-downconversion stage to 112.5 MHz IF
• Digitally closed tracking loops (carrier, subcarrier, symbol)
• Direct Digital Synthesis (DDS) reference for downlink carrier Doppler tracking
• Baseband telemetry modulated direct at X-band
• Embedded softcore processor (Leon3-FT) for configuration and protocol mgmt
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Iris Hardware Photos
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Software Defined Radios

• Leading the pathway to “smart radios”
– Reconfigurable to adapt to mission-specific needs
– Platform for rapid technology infusion

• Delay/Disruption Tolerant Networking
• Pseudo-noise (PN) Regenerative Ranging
• Advanced higher-order modulation schemes
• State-of-the-art Forward Error Correction algorithms
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Electra Proximity Radio Universal Space Transponder Multi-Mission Sys. Architectural Platform

Automatic Gain Control algorithm Coherent transponder algorithm Reed-Solomon encoder

Carrier/Subcarrier tracking loops Sequential ranging demodulator Turbo 1/2, 1/3, 1/6 encoder

Phase Shift Key modem Delta-DOR tone generator Hardware Command Detector

Early/Late symbol synchronizer BCH uplink decoder Error Detection and Correction

Software Defined Radio Heritage Pieces
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One-Time ProgrammableReconfigurable

Deep-Space Transponder Comparisons
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Planned Deep-Space CubeSat Missions
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BioSentinel, AMES

Use yeast to 
detect, measure & 

compare the 
impact of deep 

space radiation on 
living organism 

over long 
durations beyond 
low-Earth orbit.

NEA Scout, MSFC

Proof-of-concept of a 
solar sail CubeSat

capable of 
encountering near-

Earth asteroids (NEA).

CuSP, SwRI

Study the dynamic 
particles and 

magnetic fields that 
stream from the Sun 

and as a proof of 
concept for the 
feasibility of a 

network of stations 
to track space 

weather.

MarCO, JPL

Provide real-time 
bent-pipe relay 

communications 
during InSight’s Entry-
Descent-Landing into 

Mars

INSPIRE, JPL

Provide reduced 
size and cost 

components to 
enable a new 

class of 
interplanetary 

explorers.
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Future Enhanced Iris Capabilities

• Higher downlink rates beyond 2Mbps

• Low-Density Parity-Check (LDCP) code

• SpaceWire interface for high-rate data 

transfers to S/C C&DH unit

• Pseudonoise (PN) Regenerative 

Ranging for improved ranging SNR

• Reliable space-link protocols (CCSDS 

Prox-1 protocol)

• Delay/Disruption Tolerant Networking

• Other frequency bands (UHF, S, Ka)
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TRL-4 S-/Ka-band exciter
S-band RF output: 0dBm
S-band phase noise: -95 dBc/Hz
Ka-band RF output: -13dBm
Ka-band phase noise: -74 dBc/Hz
Power: 4.7W
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Conclusion

• Iris Deep-Space Transponder with radiometric tracking 
support for orbit determination of CubeSats.

• NASA’s Deep Space Network functions for overcoming 
the challenges of deep-space telecom and navigation.

• Software defined radios as “smart radios” to enable 
rapid technology infusion.
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