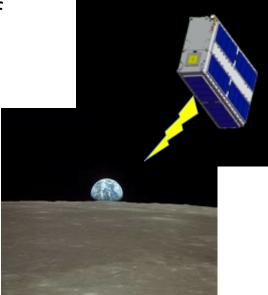
CubeQuest CHALLENGE

Advanced CubeSat Technologies for Affordable Deep Space Science and Exploration Missions

Ground Tournaments, the Moon, and Beyond

Jim Cockrell Cube Quest Challenge Administrator ISSC - 1 May 2017

Outline


- CubeSats and Future
- What is Cube Quest?
 - Why a Cube Quest?
 - Rules and Prize Structure
- Today's Status
 - GT4 Competitors
 - Emerging Technologies
- Next Steps
 - GT4 winners
 - SLS PSRs
 - In-space Competition

win big prizes!

CubeSats in Deep Space

- Advantages over traditional satellites:
 - Low cost
 - Low mass
 - Standard LV interface
- Developed, deployed in fraction of time, cost, of traditional "high-stakes" satellite
- Interchangeable secondary payloads
 - increased launch opportunities
- Array of small CubeSats > single conventional probe:
 - asteroid seismographs
 - array of Mars weather stations
 - distributed , temporally correlated measurements
 - redundancy at the system level; robust system of systems
 - nodes for antenna arrays or telescope arrays

Current CubeSat Limitations

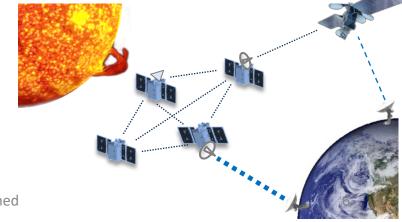
To-date, CubeSats haven't ventured beyond LEO:

Limitation	SoA	Deep Space Missions Need	
Limited comm range	Low-gain dipoles or patches mainly used	high gain directional antennas needed	
Limited comm data rate	Low power, amateur band transmitters mainly used	High-power, high frequency, wide bandwidth transmitters needed	
Lacking radiation tolerance	COTS, low-cost parts used; more benign environment of LEO	Radiation shielding, fault detection, fault tolerance	
Lacking in-space propulsion	Not demonstrated (except solar sails); chemical fuel/pressurized containers prohibited	High thrust, high ISP needed; chemical, electrical, solar	
Depend on Earth- based nav references	Passive magnetorquers used; GPS or magnetometers sense Earth's magnetic field	Start trackers, moon/sun sensors, radar altimeters and other sensors needed for deep space	

Can CubeSats Enable More Affordable Science and Exploration Missions in Deep Space? Why a CubeSat Centennial Challenge?

- Achieve goals of NASA, other Government Agencies, industry?
- More affordable science and exploration missions?
- Unique missions (swarms, cooperative operations)
- Take advantage of payload capacity; launch unobtrusively?

Future Mission Needs of Stakeholders Drive the Challenge


Trace Capabilities to NASA Roadmaps

- Astrophysics:
 - Distributed RF and Optical Arrays on affordable satellite constellation
 - Affordable, time-correlated (simultaneous) multi-point observations of NEOs (mass density, albedo, etc)
- Planetary Explorations:
 - Distributed measurements (Ex: surface seismographic; Mars "weather systems", multi-site impactors to detect lunar subsurface volatiles, etc.)
 - Co-ordinated assets (Ex: landers paired with orbiting relays)
- Heliophysics:
 - Global coverage
 - Multiple observations of transient events (Ex: radio occultation)
 - Geographically distributed time-correlated "space weather" measurements
- Earth Science
 - Global coverage (multiple)
 - Time correlated weather, oceanic observations

Heliophysics, Multipoint Science

Designing Cube Quest

- Considered 5 competitive scenarios
 - * Lunar flyby long-distance comm
 - Lunar Impactor
 - + Lunar Orbiter
 - 2 Sat Comm Relay
 - Proximity ops in cisLunar environment
 - (Lunar Lander not evaluated, as impractical dV req't)
- Each scenario depends, relatively more or less, on these subsystems:
 - Propulsion
 - Deep space survival
 - Comm
 - Power
 - Pointing
- Each scenario applies, relatively more or less, to future needs/goals
 - Precursor missions
 - Earth Science
 - Heliophysics/Space Weather
 - NEO surveys

 * Selected Scenarios that develop the most capabilities, with greatest applicability to needs/goals

Combined Long-distance comm, Lunar Orbiter, as optimal Cube Quest "missions"

- Objective: Achieve Lunar Orbit
- <u>Requires</u>:
 - Propulsion, high dV
 - Navigation without GPS or Earth's magnetic field
- <u>Objective</u>: Hi Data Rate, Large Data Volume, Far Comm Distance
- <u>Requires:</u>
 - High power transponder; high gain antenna; long & frequent ground station passes; deployable antennas; stable ACS; precise knowledge of Earth direction
- <u>Objective</u>: Longevity (survival)
- <u>Requires:</u>
 - Rad hardening, redundancy, shielding
- All are critical capabilities for deep space operations

Prize Structure

<u>Ground</u> Tournaments (GT)

4 Rounds Approx every 6 months

GT-1 - top 5 win \$20k GT-2 - top 5 win \$30k GT-3 - top 5 win \$30k GT-4 - top 5 win \$20k Total \$500k

Top 3 qualified GT-4 teams launch free on EM-

Qualify for 1 of 3 EM-1 launch slots - *or* – get your own ride

Total \$5.0M Prize Money

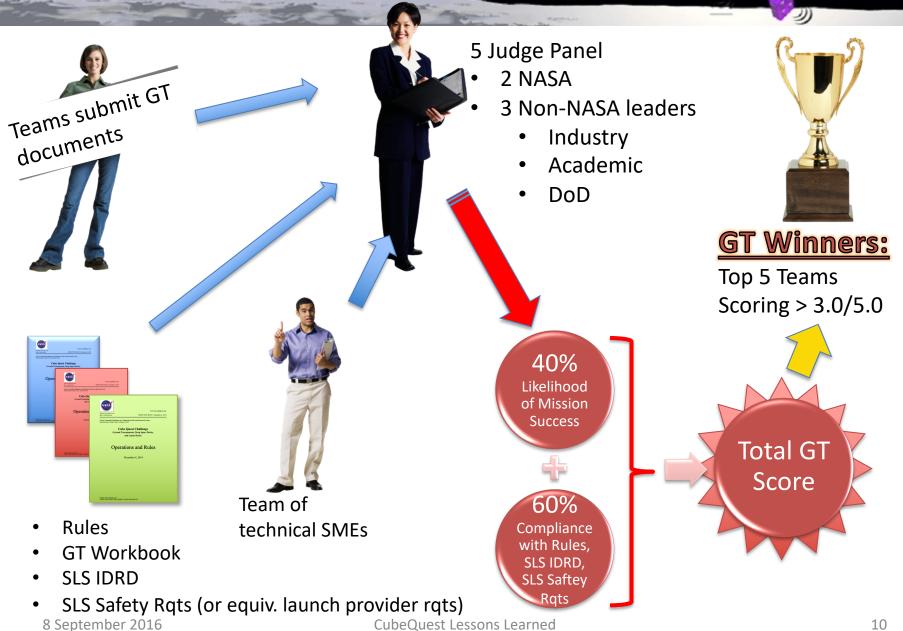
Lunar Derby

While in lunar orbit

Achieve Lunar Orbit\$1.5M/shared, \$1M max per team

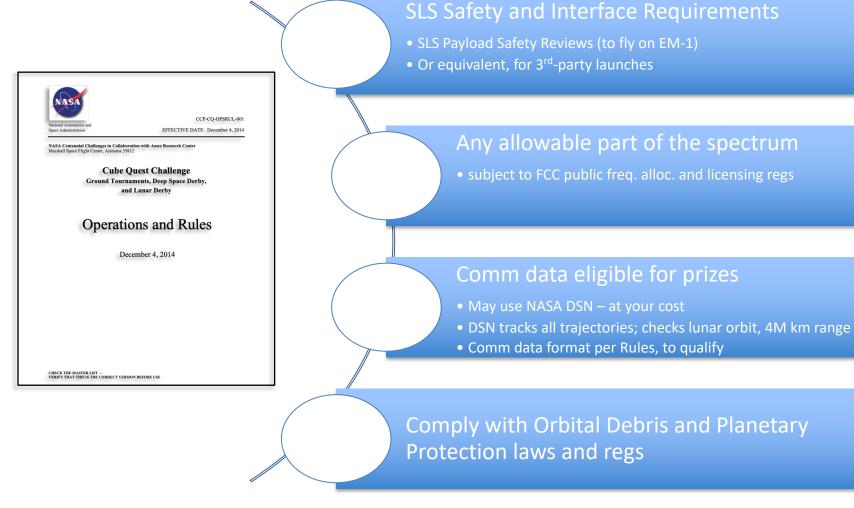
Error-free Communication Burst Rate- \$225k/25k Total Volume- \$675k/75k

Longevity \$450k/50k


<u>Deep Space</u> <u>Derby</u> While range ≥4M km

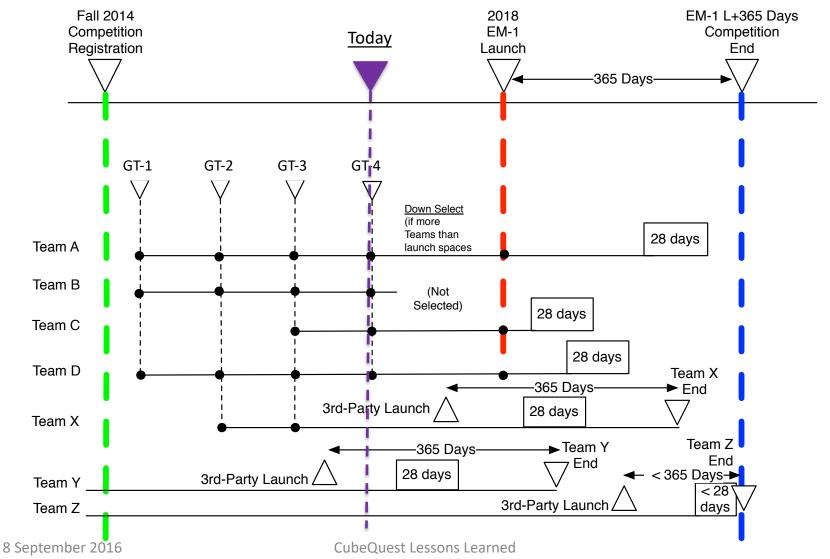
Farthest Distance \$225k/25k

Error-free Communication Burst Rate- \$225k/25k Total Volume- \$675k/75k


Longevity \$225k/25k

Ground Tournaments

Rules and Constraints


http://www.nasa.gov/cubequest/reference

CubeQuest Lessons Learned

Versatility of CubeQuest Rules

- EM-1 or procure your own launch
- Propulsion or no propulsion
 - Deep Space Challenge does not require propulsion
 - 365-day time rule should allow exotic trajectories to lunar orbit
- Use NASA SCaN (NEN, DSN) at your own cost
 - NASA uses DSN to enforce rules
 - DSN costs and limited aperture time incentivize teams to develop alternative ground stations
- Competition start date is EM-1 launch or 3rd party launch date
 - End date is 365 days after EM-1 launch or 356 days after 3rd party launch, whichever occurs <u>first</u>

Current Status

the man

Centennial Challenges Program

- NASA STMD's Centennial Challenges Program, initiated in 2005, named after Wright Brothers' Kitty Hawk flight
- Engages public in advanced technology development
- Prizes for solving problems of interest to NASA and the nation
- Competitors based in US; not supported by government funding.
- Since 2005, there have been eight challenge categories, resulting in more than 20 challenge events to date.
- More than \$6 million in prize money has been awarded to more than 17 different teams
- Summer 2013, work began on Cube **Quest Challenge** 8 September 2016

Current **Centennial Challenges:**

- Sample Return Robot
- **3-D Printed Habitat**
- Mars Ascent Vehicle
- Cube Quest

Ground Tournaments Lead to EM-1 Launch

GT1	GT2	GT3	GT4	EM-1
1. Alpha Cubesat - Xtraordinary Innovative Space Partnerships, Inc 2. Cislunar Explorers - Cornell University 3. HuskySat - University of Washington 4. Lunar CubeQuestador - Missouri University of Science and Technology 5. MIT KitCube - Massachusetts Institute of Technology 6. Novel Engineering - Novel Engineering Inc. 7. OpenOrbiter Lunar I - University of North Dakota 8. ERAU Eagles - Embry- Riddle Aeronautical University 9. Project Selene - Flintridge Preparatory School 10. Heimdallr- Ragnarok Industries, Inc. 11. SEDS UC San Diego - University of California - San Diego 12. Team Miles - Fluid & Reason LLC 13. True Vision Robotics - Isakson Engineering	 Alpha CubeQuest, XISP Inc CisLunar Explorers, Cornell University Eagles-Quest, Embry- Riddle Aeronautical University Earth Escape Explorer (CU-E3), University of Colorado Goddard Orbital and Atmospheric Testing Satellite (GOATS), Worcester Polytechnic Institute Lunar CubeQuestador, Missouri University of Science & Technology MIT KitCube, Massachusetts Institute of Technology Heimdallr, Ragnarok Industries Inc. SEDS Triteia, SEDS University of San Diego 10. Team Miles, Fluid & Reason LLC 	 Team Miles Fluid & Reason, Tampa, Florida (placed first in GT-1 and fifth in GT-2) Cislunar Explorers - Cornell University, Ithaca, New York CU-E3- University of Colorado, Boulder KitCube - Massachusetts Institute of Technology, Cambridge, Massachusetts SEDS Triteia - University of California, San Diego Ragnarok, Ragnarok Industries Inc. MIT KitCube, Massachusetts Institute of Technology Goddard Orbital and Atmospheric Testing Satellite (GOATS), Worcester Polytechnic Institute 	 Team Miles Fluid & Reason, Tampa, Florida Cislunar Explorers - Cornell University, Ithaca, New York CU-E3- University of Colorado, Boulder SEDS Triteia - University of California, San Diego Heimdallr, Ragnarok Industries Inc. 	?

Current Teams – GT4 April-May 2017

* - indicates EM-1 Qualifier

Industry

*Heimdallr Ragnarok Industries, Inc

*Team Miles Fluid & Reason LLC

Academia

*Cislunar Explorers Cornell University

* SEDS UC San Diego University of California- San Diego

* CU-E3

University of Colorado - Boulder

CubeQuest Emerging Technologies

- Comm
 - UHF, S-, X-, C- band
 - Mainly patch antennas
 from moon and
 beyond
 - Deployable antennas
- Ground Stations
 - DSN
 - WFF UHF
 - AMSAT X- and S-band
 - Commercial
 - Univ dishes
 - Arecibo

- Propulsion
 - Busek green monoprop
 - EP (Xenon and Iodine)
 - 3D printed thrusters
 - Electrolysis of water for fuel
- Other Technologies
 - Rad hardened CPU, memory, error checking and redundancy
 - Blue Canyon GNC / ADCS
 - Custom design:
 - Sun sensors
 - Star trackers
 - Reaction wheel
 - Imagers / quaternions

Emerging Technologies – Propulsion, Other

Propulsion

- COTS
 - Busek green monopropellant
 - ConstantQ plasma thruster (lodine)
 - Phase Four plasma (Xenon) spin off from U of Michigan
 - Standard Micro Propulsion System from Vacco, cold gas, for attitude control
- Custom In-House
 - 3D printed cold gas for attitude control
 - Electrolysis of water for H2 and O2, for 3D printed titanium thruster fuel and oxidizer
 - Hydrogen peroxide monopropellent for 3D printed Inconel 716

Other Tech

- Rad-hard components
 - deep space radiation, longer mission lifetimes intensify effect. Lunar orbit provides a proving ground for radiation-based experiments or technology demonstrations.
 - 1 team plans Resilient Affordable CubeSat Processor (RACP), a microcontroller and 3 ARM 15 SoC uPs., with a health monitoring and management system to check processors and subsystems
- Navigation Systems
 - No GPS or magnetic field in cis-lunar space
 - Clue Canyon Technologies XACT star tracker, sun sensor and reaction wheels.
 - Or combinations of their own sun sensors, and COTS inertial sensors for ADS.
 - GEO-hard Miniature Integrated Star Tracker (MIST) from Space Micro,
 - In-house ADCS, with in-house reaction wheels, in-house star tracker and sun sensors
 - Navigate using Raspberry Pi camera to image Earth, Sun and Moon, and gyro using transformation matrix to spacecraft body from and inertial frame.

Emerging Technologies - Communications

- Communication Technologies
 - 1. RF Bands Utilized
 - S-Band
 - Commonly used but cutting-edge for CubeSats
 - Teams plan S-band for radio comm and trajectory determination
 - X-Band
 - DSN primarily uses X-band, but CubeSats haven't the power to use before
 - Teams plan X-band to commercial gnd stns or DSN
 - C-Band
 - Has some use in general sat comms; 5cm band is amateur band
 - Team plans AMSAT in C-band
 - UHF
 - Often used in CubeSats in amateur bands, to lots of amateur gnd stns
 - Team plans UHF for long distance using WFF 18m dish
 - 2. Antenna Design
 - Patch Antennas
 - Commonly used on CubeSats due to small size and low cost; but lacking in gain
 - Deployables
 - 1 team plans to use a reflectarray on reverse side of solar panel, fed by deployable feed horn

- **GT-4 the final Ground Tournament underway!**
 - Document submittals received April 6
 - Supplemental submittals April 19 (test results)
- GT-4 winners to be announced at SmallSats-Deep Space Symposium

SmallSats – Deep Space June 7-8 at ARC

- Co-Produced by Small Satellite Technology Program, Small Satellite Systems Virtual Institute, and Centennial Challenges Program
- Invited speakers include:
 - Leaders from SMD, HEOMD, STMD
 - SSSVI and SSTP Program Managers
 - EM-1 payload developers
 - Cube Quest Teams
 - More!
- The event culminates in the prize awards to the winners of the Cube Quest Challenge Ground Tournament and top 3 winners selected for EM-1

- CubeSats will soon enable affordable science and exploration missions in deep space
- Cube Quest Challenge rewards citizen inventors to help NASA, stimulate and industry, for the public benefit
- Competitors already advancing CubeSat technology
- Cube Quest Challenge may serve as pathfinder for other ambitious prize challenges

CubeQuest CHALLENGE

Advanced CubeSat Technologies for Affordable Deep Space Science and Exploration Missions

Questions?

