

Sampling Venus' atmosphere with a low-cost, free-flying Smallsat probe mission concept

Tony Freeman, Christophe Sotin, Murray Darrach, John Baker Jet Propulsion Laboratory

April 2016

Copyright 2015 California Institute of Technology Government sponsorship acknowledged Goal I: Atmospheric formation, evolution and climate history

Goals, Objectives, and Investigations for Venus Exploration

Table 2. VEXAG Goals, Objectives and Investigations					
Goals are not prioritized; Objectives and Investigations are in priority order.					
Goal	Objective	Investigation			

y on Venus	A. How did the atmosphere of Venus form and evolve?	1. Measure the relative abundances of Ne, O isotopes, bulk Xe, Kr, and other noble gases to determine if Venus and Earth formed from the same mix of solar nebular ingredients, and to determine if large, cold comets played a substantial role in delivering volatiles.			
		2. Measure the isotopes of noble gases (especially Xe and Kr), D/H, ¹⁵ N/ ¹⁴ N, and current O and H escape rates to determine the amount and timeline of the loss of the original atmosphere during the last stage of formation and the current loss to space.			

Noble gases are tracers of the evolution of planets

They trace:

- The supply of volatiles from the solar nebula
- the supply of volatiles by asteroids and comets
- the escape rate of planetary atmospheres
- the degassing of the interior (volcanism)
- the timing of these events

For example Xe (9 isotopes):

- Depleted / Kr
- Fractionated in mass
- Comparative planetology will help determine the processes involved in the distribution of noble gases

Pepin et al., 1991; Chassefiere et al., 2012)

L/V + Trajectory

- OSC Pegasus XL L/V with a STAR27H motor*
- Nominal Launch Date: 05/18/23 12:00 UTCG
- $C3 = 6.1 \text{km}^2/\text{s}^2$ for a 55 kg payload
- Type II direct transfer

*Source: Warren Frick, et. al., "Micro High Energy Upper Stage," SmallSat Conf., Logan, Utah, (2014).

Near-Venus ConOps

Atmospheric Entry Conditions

Density profile

The values of density are required for the instrument performance model and for the design of the probe

Mission Design

Encounter: 24 Oct 2023 19:10:05.000 UTCG

Mission Design

Processing/crosslink/downlink takes place entirely in view of Sun & Earth, maximum separation: ~1310 km

Mission Design

Processing/crosslink/downlink takes place entirely in view of Sun & Earth, maximum separation: ~1310 km

Design Configuration

Cupid's Arrow Quadrupole Ion Trap Mass Spectrometer (QITMS)

QITMS Isotopic Precision is 3-5 times better than required

Instrument Requirements vs. Performance

Performance versus requirements for noble gases ratio

			Expected Ir (cnts)	ntensity		
Approximate Isotopic Ratios	Assumed Fractional Abundance		Major]	Minor	Precisio n [%]	Requirement*
3He / 4He		0.0003	2.80E+08	8.39E+04	0.345	5 to 10
20Ne / 22Ne		12	1.63E+08	1.36E+07	0.028	1
36Ar / 40Ar		0.9	9.32E+08	8.39E+08	0.005	
36Ar / 38Ar		5.4	1.08E+08	2.00E+07	0.024	1
82,83,86Kr / 84Kr		1	1.63E+05	1.63E+05	0.350	1
129, 136 Xe / 130Xe		1	2.33E+04	2.33E+04	0.926	1
124 etassue means integr	rated over	5 min	s 2.33E+04	4.66E+03	1.605	5
				*	Chassefie	ere et al.,

2012

© 2015 California Institute of Technology. U.S.

Government sponsorship acknowledged.

Design Summary - Probe

- Instrument
 - 8 kg Quadrupole Ion Trap Mass Spectrometer (QITMS)
 - Pressure transducer
- Telecom
 - Vulcan UHF transceiver
 - NanoCom ANT430 UHF dipole antenna
- Mechanical
 - 4kg aeroshell structure
 - UHF transparent material allows crosslink through the backshell
 - 3kg TPS
 - 2.5kg internal structure
 - 1kg harness
 - 0.5kg balance mass
 - 0.5kg for upper half of Lightband
- Total Mass 21.6 kg
- Total Volume: 17 liters

- ♦ C&DH
 - JPL Sphinx Avionics
- Thermal
 - MLI and Heaters
- Power
 - 10 Saft LO30SHX primary battery cells
 - 0.1kg Custom EPS

Probe Design

- Entry probe shape
 - 45 deg sphere-cone
 - Scaled-up version of Hayabusa probe; Pioneer-Venus also 45 deg s-c
 - D = 60 cm (diameter), Rn = 30 cm (nose radius)
 - Assumed constant drag coefficient of 1.12 based on Hayabusa data
 - Design for worst-case altitude of 110 km

Probe Thermal Design

Cruise Stage Design

Venus Probe Free-Flyer

Key Technical Parameters						
Mass	Probe Mass 22 kg; Cruise stage Mass 18 kg; Mass Margin 14 kg					
Dimensions	Aeroshell is a 45-degree sphere cone; Diameter 60 cm; Cone radius 30 cm					
Power 63 W BOL eHawk arrays on cruise stage (margin 43%); 28 V dc, 2W suppl heater and battery charger prior to deployment; batteries supply 37 watt-ho after release of probe						
Instrument	Mass 7.3 kg; volume (incl. electronics) 4U					
Data Interface	RS422, SPC, I2C, or GPIOs for command/telemetry; SpaceWire for data					
Thermal	Max heat load on probe is >9200 J/cm2					
Data Volume/rate	16 Mb; crosslinked over UHF 60 kbps link for 5 minutes; X-band return to Earth via 34 m DSN station over ~ 9 hours					
Range for comms	Communication between carrier and probe at ranges < 1310 km					
Mechanical	Lightband COTS deployer used					
Payload	Ultra-compact Quadrupole Ion Trap Mass Spectrometer (QITMS)					
CubeSat Avionics	Radiation tolerant Sphinx C&DH Blue Canyon ACS					
Deployment	On approach, spin up to 10 rpm, then release probe with -1.25 m/s Delta-V; Cruise stage then executes 10 m/s divert maneuver for flyby					
Aeropass	Minimum Altitude is less than or equal to 120 km; duration 3-4 mins; lat/long -11/-71 deg; entry angle \sim 7 deg					
Environmental Conditions	11 km/sec velocity at entry, density <10 ⁻⁶ kg/m ³ ; max heating rate 150 W/cm ² , 19					
	© 2015 California Institute of Technology. U.S. Government sponsorship acknowledged.					

Conclusions

- A free-flying SmallSat probe with mass < 55 kg could deliver high-priority science at Venus for a fraction of the cost of a conventional Discovery mission
- Same approach could be adapted to other environments: Titan's atmosphere, Enceladus' plume, possible plume at Europa, ...
- The authors would like to thank Team Xc for their help in advancing the maturity of this concept