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Introduction & Motivation

• Non-spherical objects with non-uniform mass distribution and 
density
– Guidance, Navigation, and Control (GNC) of spacecraft

• Future missions to asteroids: small orbiting satellite(s)?
– OSIRUS-Rex

• Humans to asteroids: orbiters?
– Origin studies

• Why are periodic or quasi-periodic orbits interesting?
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Background: Controls

• Poincare-Bendixson Theorem1 suggests that a compact domain 𝐷,
excluding equilibrium points, with a vector field pointing towards 
its interior will have at least one stable, periodic trajectory (i.e. 
limit cycle).

𝐷

• Imagine what this implies for an n dimensional space, namely 
when n = 3. 

Figure 1: Poincare-Bendixson Theory
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Background: Optimization

• Constrained minimization problem: 

min
𝑠. 𝑡.

𝑓 𝑥 , ∀𝑥 ∈ 𝐷
𝑔 𝑥 ≤ 0
ℎ 𝑥 = 0

• In this problem, we aim to ultimately solve:

min
𝑠. 𝑡.

𝐽 =
1
2
+
!!

!"
𝒖 𝜏 "𝑑𝜏

𝒙𝑩 𝑡$ = 𝒙% 𝑡$
𝒙𝑩 𝑡& = 𝒙' 𝑡&
𝒖 𝑡 ≤ 𝑢()*

�̇� 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝐵 𝑡 𝒖 𝑡
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Background: Optimization

• When worst comes to worst, run a 
Monte-Carlo simulation

• Begin with a quasi-stable orbit and 
adjust initial conditions according 
to: 

𝒙𝒌"𝟏 𝑡$ = 𝒙𝒌 𝑡$ + 𝜹𝒙𝒌 𝑡$

Figure 2: Randomization 
of Initial Condition Vectors

Uniform Grid
Random Grid
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Methodology: Dynamic Environment Model

Figure 3: Dynamic Environment Model.
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Methodology: Dynamic Environment Model

�̈�% = −
𝜇
𝒓𝒊 ' 𝒓% + 𝒂()*+

𝒂()*+ = 𝒂,*-+𝒂'*.+𝒂/012344056

𝒂,*- =
𝐴 1 + 𝜌 𝐺∗

𝑚 𝑹𝒐𝒃𝒋 − 𝑹𝑺𝒖𝒏
> 𝑹𝒐𝒃𝒋 − 𝑹𝑺𝒖𝒏 @ 𝒓

𝒂'*. = 𝜇?
𝑹? − 𝑹%
𝑹𝒋 − 𝑹𝒊

' −
𝑹?
𝑹𝒋

'

“Cannonball” Method2

Third Body Forces
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Methodology: Dynamic Environment Model
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Methodology: Gravitational Potential Field 
Model
• MacCullagh’s Approximation3:

𝒂/012344056 = −
𝐺𝑚
𝒓 >A𝒔*

−
3𝐺

2 𝒓 @ 𝐼AA + 𝐼BB + 𝐼CC − 5𝐼* A𝒔*

+
3𝐺

2 𝒓 D 𝐼AAA𝒐A + 𝐼BBA𝒐B + 𝐼CCA𝒐C

• Eliminates the need for spherical harmonic coefficients at the 
expense of computational accuracy

• Appears to provide reasonable results for a first-order analysis of 
objects about non-spherical objects

Point-mass contribution

Polar moment of 
inertia contribution

Moment of inertia 
contribution
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Methodology: Propagator Algorithm

Figure 4: Hybrid Propagator using STMs and GVEs.
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Methodology: Periodic Orbit Solvers

• Desire: 𝒙 𝑡$ = 𝒙 𝑡$ +𝑁𝑇
• One method4 is to update state vector according to: 𝒙𝒌"𝟏 𝑡$ =
𝒙𝒌 𝑡$ +ΦE 𝑡, 𝑡$ FG 𝒙𝒌 𝑡 − 𝒙𝒌 𝑡$
– Highly sensitive to the S.T.M. Many times the solution 
𝒙𝒌"𝟏 𝑡$ diverges with no hope of landing within reason again. 

– Better with small time steps
• Another method is scan subspace of ℝ𝟑 s. t. 𝒙𝒌"𝟏 𝑡$ = 𝒙𝒌 𝑡$ +
𝜹𝒙𝒌 𝑡$
– This method works surprisingly well (at the expense of 

computational time, of course)
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Simulation and Results: 433 Eros

Figure 5: 433 Eros Radii Contour Map. Shape model adapted from Gaskell5.
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Simulation and Results: Chaos

• Chaotic orbits are common about the non-spherical object.

Collision Diversion

Figure 6: (a) Unstable Collision Trajectory, (b) Unstable Diverging Trajectory.

(a) (b)
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Simulation and Results: Chaos

• Sometimes the spacecraft orbit diverges…

• And sometimes the orbit crashes into the body…
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Figure 7: (a) - (c) Diverging Trajectories, (d) - (e) Collision Trajectories.
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Simulation and Results: Orbit Analysis

• SRP, Third Body, and Gravity Field Approximation

Figure 8: Stable, Quasi-Periodic Terminator Orbit about 433 
Eros.
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Simulation and Results: Orbit Analysis
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Figure 10: Poincare Plot.Figure 9: 3D View with Poincare Plane.
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Simulation and Results: Orbit Analysis

Figure 11: Another Terminator Orbit.

• MacCullagh
approximation yields 
two distinct terminator 
orbits of varying 
eccentricities, both 
stable, quasi-periodic.

• Scheeres et. al. 
predicted these to be 
unstable orbit solutions 
about 433 Eros, using a 
complete set of 
equations of motion. 
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Simulation and Results: Orbit Analysis

• What is going on here? 
• MacCullagh’s approximation is 

still valid
• Limitations in MacCullagh’s

approximation involved with 
apriori knowledge of only the 
moment of inertia matrix.

• Existing force models

Figure 12: Scheeres’ Zero-Velocity Plot.6
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Ongoing Efforts

• Revisit current gravitational potential field model
– Is there a method for approximating spherical harmonic 

coefficients?
• Solve the two-point boundary problem with variable specific 

impulse using SQP:

min
𝑠. 𝑡.

𝐽 =
1
2
O
+!

+"
𝒖 𝜏 >𝑑𝜏

𝒙𝑩 𝑡$ = 𝒙J 𝑡$
𝒙𝑩 𝑡K = 𝒙2 𝑡K
𝒖 𝑡 ≤ 𝑢L0A

�̇� 𝑡 = 𝐴 𝑡 𝒙 𝑡 + 𝐵 𝑡 𝒖 𝑡
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Conclusions / Lessons Learned

• Results are only as good as the model approximation. 
• Orbit approximations are only good for ~7 days. 
• Addition of perturbations yield quasi-periodic orbits.
• Apriori information increases model fidelity.
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Questions

Thank you for your attention. 
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