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Introduction & Motivation

Non-spherical objects with non-uniform mass distribution and
density

Guidance, Navigation, and Control (GNC) of spacecraft
Future missions to asteroids: small orbiting satellite(s)?
OSIRUS-Rex
Humans to asteroids: orbiters?
Origin studies

Why are periodic or quasi-periodic orbits interesting?
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Background: Controls

Poincare-Bendixson Theorem! suggests that a compact domain D,
excluding equilibrium points, with a vector field pointing towards
its interior will have at least one stable, periodic trajectory (i.e.
limit cycle).

D

\

Figure 1: Poincare-Bendixson Theory

Imagine what this implies for an #» dimensional space, namely

when n = 3. g
Georgia
Tech



Background: Optimization

Constrained minimization problem:

min f(x),Vx €D
s.t. gx)<0
h(x) =0

In this problem, we aim to ultimately solve:

. 1 (lr
min ] = EJ u(7)?dr
S.t. to

xp (tg) = x4(to)
xp (tr) = xc(tr)
Uu(t) < Upmax
x(t) = A(t)x(t) + B(t)u(t)
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Background: Optimization

When worst comes to worst, run a Grid
Monte-Carlo simulation Random Grid

Begin with a quasi-stable orbit and
adjust 1nitial conditions according
to:

Xp+1(to) = xx(tg) + Sxp (o)

Figure 2: Randomization
of Initial Condition Vectors
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Methodology: Dynamic Environment Model

Eigure 3: Dynamic Environment Model.




Methodology: Dynamic Environment Model

== i + Qpert

7312

Apert = AsrpT™A3rqTApaccullagh

A1+ p)G*
a =
- m”Robj y RSun||2
Rj — R; Rj
A3ra = Hj —
IR =R IR

(Robj - RSun) r

“Cannonball” Method?

Third Body Forces
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Methodology: Dynamic Environment Model

f'i — ”ri”3 ri i Apert
Apert = asrp+a3rd
A1+ p)G*
a =
- m”Robj y RSun||2
Rj — R; Rj
A3rqg = Uj —
SR =R IR

(Robj - RSun) r

“Cannonball” Method?

Third Body Forces
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Methodology: Gravitational Potential Field

Model
MacCullagh’s Approximation?:

Gm
Apaccullagh = — ||7‘||2 Sy Point-mass contribution
3G Polar moment of

2”1"”4 {Ixx T Iyy + IZZ _ SIT}E; inertia contribution

3G . - . Moment of inertia
+ 2”1"”5 {Ixxox + Iyyoy + IZZOZ contribution

Eliminates the need for spherical harmonic coefficients at the
expense of computational accuracy

Appears to provide reasonable results for a first-order analysis of
objects about non-spherical objects Georgia

Tech
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Methodology: Propagator Algorithm

Algorithm 1 Hybrid Propagator using STMs and GVEs

1: procedure HYBRID PROPAGATOR FOR SATELLITE ABOUT BODY-OF-INTEREST
2 set e

3: set 1401
4
5

set t'l-‘(f(.'
for k =1 — length(t,ec)

6: convert {I‘k, I‘k} — {U‘k: €hs s Ay W -\[k}
: if e;. > e;, Or 1 > iy, then
8: pass {fk., ks €hs Tk s Qs Wi 1‘7\[1\.} — odeGVE.m
. Jda de di dQ dw o dM
9: (,o%npute TS S Sy s and S
10: exit odeGVE.m
11: get {ar+1, €xt1, htts Qpr1, W1, Mrt1}
12: convert {ag+1, €r+1, k41, Uetr1, Wht1, Mes1} — {rk+1, Vik+1}
13: else
14: pass {f;‘., Ta ks Ty ks Tz ks To ks ’f‘y_;‘., ’I?':‘k} — odeSTM.m
/N
15: compute A = | 733 733
J323  Z3a3
16: compute x(t) = A(t)x + B(t)u
17: exit odeSTM.m
18: get {riy1, ey}
19: end
20: end

Figure 4: Hybrid Propagator using STMs and GVEs. Georgia
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Methodology: Periodic Orbit Solvers

Desire: x(ty) = x(to + NT)
One method* is to update state vector according to: X1 (tg) =
xi(to) + @i (t, to) ™ g () — 21 ()]
Highly sensitive to the S.T.M. Many times the solution
X+1(to) diverges with no hope of landing within reason again.

Better with small time steps

Another method is scan subspace of R3 s.t. xp41(to) = x5 (to) +
6x(to)
This method works surprisingly well (at the expense of
computational time, of course)
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Simulation and Results: 433 Eros

Figure 5: 433 Eros Radii Contour Map. Shape model adapted from Gaskell°. Georgia
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Simulation and Results: Chaos

Chaotic orbits are common about the non-spherical object.

Collision Diversion

100 -100 100 -100

(b)

Figure 6: (a) Unstable Collision Trajectory, (b) Unstable Diverging Trajectory. Ge%gg(:lﬁ




Simulation and Results: Chaos

Sometimes the spacecraft orbit diverges...

(a) (b) : (c)

77 X E
(:: S \ 100 —f 2 w0

And sometimes the orbit crashes into the body...

(d) (e)..

Georgia
Figure 7: (a) - (c) Diverging Trajectories, (d) - (¢) Collision Trajectories. Tech
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Simulation and Results: Orbit Analysis

SRP, Third Body, and Gravity Field Approximation

Figure 8: Stable, Quasi-Periodic Terminator Orbit about 433

Georgia
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Simulation and Results: Orbit Analysis
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Figure 9: 3D View with Poincare Plane. Figure 10: Poincare Plot.
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Simulation and Results: Orbit Analysis

* MacCullagh
approximation yields
two distinct terminator
orbits of varying
eccentricities, both
stable, quasi-periodic.

* Scheeres et. al.
predicted these to be
unstable orbit solutions
about 433 Eros, using a

S~ £ 88 complete set of
50 \\"‘ . .
i equations of motion.
y [km] ox [km]
Figure 11: Another Terminator Orbit. Georgia
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Simulation and Results: Orbit Analysis

19

What 1s going on here?
MacCullagh’s approximation 1s
still valid

Limitations in MacCullagh’s
approximation involved with
aprior1 knowledge of only the
moment of nertia matrix.
Existing force models

-20 -10 0 10 20

Figure 12: Scheeres’ Zero-Velocity Plot.°
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Ongoing Efforts

Revisit current gravitational potential field model

Is there a method for approximating spherical harmonic
coefficients?

Solve the two-point boundary problem with variable specific
impulse using SQP:

. 1 (lr
min ] = EJ u(t)?dr
S.t. to

xp (tg) = x4(to)

xg (tr) = xc(tr)
u(t) < Umax
x(t) = A)x(t) + B(t)u(t)
Georgia
Tech |
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Conclusions / Lessons Learned

Results are only as good as the model approximation.
Orbit approximations are only good for ~7 days.
Addition of perturbations yield quasi-periodic orbits.
Aprior1 information increases model fidelity.
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Questions

Thank you for your attention.
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