Europa Surface and Plume 3D eXplorer (ESP-3DX): A CubeSat mission to Search for Plumes on Europa

J. Thangavelautham, A. Rhoden, J. Bell, P. Scowen, A. Babuscia, H. Barnaby, M. Robinson, L. Clark and the ESP-3Dx Team

Science Objectives

Track a fracture to obtain stereo images from ridge to regolith scale

Science Motivation

We know tides cause fractures but ...

Do cracks reach water? What forms ridges? Are there plumes? Habitability Ice shell processes Ocean composition Biosignature detection

Science Team Recommendations

- Instruments Rank
- 1) Recon Camera (RC)
- 2) Stereo Topography Imager (TI)
- 3) Shortwave Infrared Point Spectrometer (SWIRS)
- Based on most important science questions, ASU expertise and what unique science could be done with a CubeSat
- Selected science instrument could do all three.!

Science Traceability Matrix

Goal	Flagship Objective [2]	Investigation	Measurement	Instr.		
EXPLORE EUROPA TO INVESTIGATE ITS HABITABILITY	ICE SHELL Characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice- ocean exchange.	Characterize the distribution of any near-surface water and the shell structure.	High-resolution or stereo topographic imaging	RC	TI	
		Correlate surface features and sub- surface structure to investigate processes governing material and thermal surface-ice-ocean exchange.	Measure surface spectral reflectance	SWIRS		
			High-resolution or stereo topographic imaging	RC	TI	
	COMPOSITION Understand the habitability of Europa's ocean through composition and chemistry.	Determine the role of Jupiter's radiation environment in processing materials on Europa.	Measure surface spectral reflectance		SWIRS	
		Characterize the surface expression of geochemical pathways in Europa's ocean.				
	GEOLOGY Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities.	Determine sites of most recent geological activity.	High-resolution imaging	RC	TI	
		Observe evidence for subduction near dilational bands.	High-resolution imaging	RC	TI	
		Study surface block size frequency distribution.	High-resolution imaging	RC	TI	

- 40+ flybys of Europa
- Near-global imagery at 50 m/pix (*EIS*)
- Will characterize landing sites with high-res and stereo imagery
- Imaging will not be targeted

SpaceTREx

Europa CubeSat

- Track a fracture over 100s of km
- Sequence of stereo images from ridge to regolith scale (1 km – 10s cm per pix)
 - Small-scale properties

ESP-3Dx

- Slopes, heights, and width
- Morphology of ridges + central trough
- Targetable w/ in 400 km range
- Cycloid tracking w/ more propulsion

Landing Site Determination

Penitents

Glaciers

- ESP-3DX CubeSat Advantage
 Complement the great science coming out of the flyby mission
- 1) Science: Targeted higher res recon and stereo visible images of lineament, surface topography
 - 0.3 m to 2 m/pixel
- 2) Science: Oblique view enables peering into the lineament cracks and obtain evidence for past/present plumes
- 3) Landing Site Recon: Recon images, topography, radiation important for landing site determination

System Overview

Mass: 5.2 kg spacecraft Volume: 3U Power: 21 W (avg.), 50 W peak Mission: 10 hrs Instruments: Stereo CID Cameras Radiation Dosimeter

Mission:

- (1) High-res imaging and stereo map of a Europa linae (0.3 to 2 m/pixel)
- (2) Stereo imaging of Europa surface topography, evidence for melt, plume and surface deposit
- (3) Recon and radiation conditions for landing site

Science Data Products

- 250 500 stereo images (1024 × 1024 pixels)
- Radiation dose readings @ 1 Hz
- Based on data rates of 2 MBps to 4 MBps
- Main factor is separation distance from Europa Flyby Spacecraft

Concept of Operations

ESP-3Dx 🄊

Propellant

– H236fa

System

System Internals

System Architecture

Mass and Volume Budget

Mass

	Mass
Subsystem	(kg)
Communications	0.5
Onboard CPUs	0.3
Science Instruments	1.3
Power	0.6
Propulsion	0.5
Navigation	0.3
Structure	1.0
Radiation Shielding	0.5
Thermal	0.15
Total	5.2

Volume

Subsystem	Volume (cm³)
Communications	200
Onboard CPUs	120
Science	
Instruments	500
Power	300
Propulsion	500
Navigation	50
Structure	400
Radiation Shielding	300
Thermal	150
Total	2520
Margin	26 %

Science Instruments

- SpectraCam 84 CID Imager
- 1024 x 1024 pixels
- Rad hardened: 5+ MRads
- Excellent dynamic range
 - 120 to 1100 nm
- Fast scan: 200 Khz
- Random access
- Target SNR: 80 %
- FOV: 45 or 60 °
- TRL 5

Why CID Imagers Naturally radiation hardened.

a) CID sensor, flux rate = 100krad/hr

b) CCD sensor, flux rate = 100krad/hr

c) CID sensor, TID = 0.45Mrad

d) CCD sensor, TID = 0.1Mrad

Discussion

<u>ESP-3Dx</u>

- We propose a Europa CubeSat mission concept that will help to do Decadal survey science and complement the Europa Flyby spacecraft.
 - Linea shape, topography, answer how they formed, if plumes exists
 - Shed light on the liquid ocean hypothesis
- Short of a lander it will give detail images of potential landing sites, a feel for the surface, surprises that awaits for low overall mission risk and low cost

Discussion

- Major development exists to take current state of the art technologies and apply them to the Europa CubeSat mission.
- The work will be a lot easier if the CubeSat PPOD is shielded heavily.
- Options are better if a 6U is considered instead of 3U.
- ASU team is eager and well qualified to tackle these challenges.

- 1) Development path for the CID cameras
- 2) Radiation mitigation strategies shielding vs hardening
 - Look into JPL's rad hard Sphinx processor
- 3) Thermal design and control

4) SphereX/powered lander/hopper – alternate solution to lander

Thank You!

Questions ?