

An Orbital Maneuvering Vehicle for Transport Beyond Earth Orbit

Interplanetary Small Satellite Conference

25 April 2016

Overview

- Secondary Payload Adapters and Dispensers
- Orbital Maneuvering Vehicle
 - Moog's Vertical Integration
 - Beyond Earth Orbit heritage
- Example Lunar Mission
 - Architecture
 - Payload Capacity & Delta-V Budget
 - Mass Budget
- Conclusion

Moog Space Access and Integrated Systems

CubeSat and OMV work is mainly supported by Moog personnel in Golden, CO, Mountain View, CA and Chatsworth, CA

- Moog Integrated Systems provides a focal point to harness the breadth and depth of Moog capability
 - Mission architecture/design
 - Launch strategy
 - Spacecraft systems engineering
- The IS group works with customers at the initial stages to identify and optimize technical, cost, risk and programmatic trades
- Moog has supported trades and developed concepts for:
 - Commercial GPS-RO Weather constellation
 - Commercial Broadband Satellite Mega Constellation
 - NASA Asteroid Return Mission
 - Non-traditional Mars Mission
 - Numerous mission concepts based on an Orbital Maneuvering Vehicle (OMV)

Moog Secondary Payload Adapters For Rideshare

- ESPA: Moog flagship adapter product (up to 300kg secondary payloads)
 - Atlas V, Delta IV, Falcon 9 heritage
- Moog has partnered on the development of nanosat deployers
 - Cubestack and NLAS Wafer adapters: 8x 3U, 4x 6U (or combinations)
 - FANTM-Ride: ESPAsat-sized box, 3U & 6U spacecraft with additional space for central microsat

C LoadPath

Photo Credit: ORBCOMM

Moog Growing Family of Adapters

Flat Plate Adapters

ESPA as Bus:

LCROSS

CubeSat Wafer

ESPA SUM

OMV

SPACE AND DEFENSE GROUP

ESPA 6-15-24 LCROSS

ESPA 4-15-24 DSX

ESPA 2-15-24-4PT EAGLE

SL ESPA 15

ESPA 4-24-32 SPECIAL OMEGA

ESPA 5-24-42 SHERPA

SL ESPA 24

2x ESPA 4-24-42 ORBCOMM

ESPA n-d-h n=number of ports, d=port diameter (inches), h=ring height (inches)

4

ESPA Grande

	Port Diameter	Payload at 20-in CG
ESPA Grande	24 in	700 lbm / 318 kg
Standard ESPA	15 in	400 lbm / 181 kg

- OG2 Mission 1 (July 2014) was first use of ESPA for constellation deployment
- Mission 2 launched with 3 rings in December 2015
 - Three 4-port ESPA rings with SoftRide and harness integrated by Moog at SpaceX SLC-40

Moog engineers assembling dispenser stack (Photo Credit: ORBCOMM)

FANTM-RiDE[™]

Configurable enclosure for multi-manifest missions

- Collaboration between Xtenti and Moog CSA
- Mix and match CubeSats with microsats and other nanosats in ESPAsat-sized box (610 mm x 610 mm x 812 mm)
 - FANTM-RAIL: CubeSat deployer in development
 - 3U and 6U spacecraft two deep along interior walls, leaving space for central microsat
 - Compatible with multiple launch options
- Mass tuned for flexible integration schedule
 - No need for last-minute coupled loads analysis
- Integration services provided by Xtenti

www.fantm-ride.com

Moog OMV Family

The OMV family of applications requires the use of scalable subsystem capability

OMV: Taking Advantage of Moog's Vertical Integration

- Core structure Moog ESPA
- Moog Integrated Avionics Unit (IAU)
 - Flight computer
 - On-Board Data Handling (OBDH)
 - Power conditioning and switching
 - Precision Orbit Determination

Chemical propulsion systems Flight software ACS actuators and sensors Solar array / antenna pointing EGSE & mission simulation software

Each OMV is specifically tailored for the mission requirements.

Moog In Space

OMV Variants – Propulsion System Capabilities

	Core Monoprop Feed System			Common Pressurization System Core Monoprop Feed System		Common Pressurization System Extended Monoprop Feed System		- 	Common Pressurization System			Modified Pressurization System		
									Core Monoprop Feed System		Add On Oxidizer System		> S	Kenon Feed ystem
	6x1N	4x22N		6x1N	4x22N	6x5N	4x135N		6x1N	4x22	N 4	x22N	6x4N	2x750mN
Parameter	Monopropellant							Bipropellant			Electric			
Propellant	Hydrazine or LMP-103					03S			Hydrazine/NTO dV + Hydrazine ACS			SEP: Xenon Cold Gas ACS		
dV Thrust	8	88 N 88 N		540 N			88 N or 176 N			1.5 N				
ACS Thrust	1 N each 1		1 N	each	5 N each			1 N each			4 N each			
Prop Volume	23	34 liters 312 liters		611 liters		700 liters			130 liters					
OMV Payload Performance at Various Delta-Vs (Monopropellant: Hydrazine to LMP-103S Range)														
400 m/s	800-1200 kg 1200-1800 kg		2700-3800 kg		5275 kg			N/A						
1600 m/s	N/A N/A		110-340 kg			580 kg			N/A					
5000 m/s	N/A N/A		N/A			N/A			600 kg					

Lunar OMV for CubeSat Transportation and Communications

- Moog collaborated with Tyvak to understand the communications challenges for a small satellites at the moon
- Single payload carrying dispenser
 - FANTM-RiDE deployment device
 - 10 x 3U CubeSats

- Communications system tailored to simplify small satellites communications requirements
- Lightweight ESPA to minimize structural mass
- Propellant: Pressurized HPGP

Lunar Communications Hub Example

(LRO Heritage) on OMV

Radio on OMV

- Utilize existing radios
- Maintain low power options
- Less stringent pointing requirements
- Higher data throughput
- Lower cost (DSN not required)

*Reference: http://science.nasa.gov/science-news/science-at-nasa/2006/30nov_highorbit/

Launch & Lunar Transfer

- Shared Launch Configuration
 - Dropped in GTO
 - Translunar Orbit Injection = Three Maneuvers + Lunar Capture
- Options utilizing weak stability boundary orbits are also under consideration depending on mission time constraints & excess launch vehicle capacity

Example secondary launch configuration

Deployments & Maneuvers	OMV Delta-V	OMV Fuel Required	Duration after Launch		
OMV dropped in GTO	0 m/s	0 kg			
Translunar Orbit Injection (1)	240 m/s	102.2 kg	Day 1		
Translunar Orbit Injection (2)	240 m/s	92.7 kg	Day 2		
Translunar Orbit Injection (3)	240 m/s	84.1 kg	Day 4		
Mid-course Maneuver	50 m/s	16.5 kg			
Lunar Capture (at 200 km)	810 m/s	225.3 kg	Day 8		
TOTAL	1580 m/s	520.8 kg	8 days		

Reference: Biesbroek, R. and Janin, G. "Ways to the Moon." ESA Bulletin 103, August 2000.

Mass Budget and Delta-V: 100 kg Payload

Mass Summary							
Subsystem	Contingency + Mass						
Avionics	7.3	kg					
Communications	8.8	kg					
Power	32.0	kg					
ADCS	25.6	kg					
Structure	207.8	kg					
Propulsion & Pressurization System	66.9	kg					
Thermal	6.2	kg					
Harness	17.3	kg					
Payload	100.0	kg					
SubTotal	471.9	kg					
HPGP Propellant	446.4	kg					
Total	918.3	kg					

Total Delta-V Capability: 1580 m/s with 10 kg margin

Conclusions

- An architecture that leverages Small Payloads + OMV opens up numerous possibilities for exploration beyond Earth's orbit and scientific discovery
 - Example simplified transportation for carrier and small payloads to reach orbit via a commercially procured GTO drop-off
 - Cost savings enabled by a shared launch and the ability to ferry multiple small payloads with diverse missions
 - Continued communications support to small payload missions after reaching their destination orbit (e.g. Lunar)
 - Offers secondary payloads an alternative lunar option to the EM-1 launch
- An advantage of this propulsive ESPA concept is the vertical integration Moog can leverage. Sourcing components in-house creates a number of benefits, including:
 - Reduction in programmatic costs, lead time and risk
 - Heritage
 - Scalability for numerous applications

Contact Info

Please contact us with any ideas and/or potential applications for this technology you would like to discuss

- Chris Loghry
 - <u>cloghry@moog.com</u>
 - 720-289-7041
- Marissa Stender
 - <u>mstender@moog.com</u>
 - 720-557-3872
- Joe Maly
 - jmaly@moog.com
 - 650-960-4226

