iEPSat: CubeSat propelled to lunar space by ionic liquid electrospray thrusters

David Krejci, Paulo Heredia and Paulo Lozano

Interplanetary Small Satellite Conference, Pasadena, CA, April 25-26, 2016

- Electrospray principle, thruster design and operation
- Current propulsion modules
- Performance characterization of current emitters
- Future propulsion module studies for high ΔV scenarios

Ionic liquid electrospray

- Room temperature molten salts
- Zero vapor pressure liquids
- Relatively high conductivities
- Stable over a wide temperature range

- Ion extraction for E*~1.6×10⁹V/m
- 100s of nN per emitter tip \rightarrow array

Emitter arrays

iEPS thruster design

- Entirely passive devices
- Positive and negative ion emission -> self neutralization
- Porous glass emitter chip in silicon frame packaging for aperture alignment
- 480 emitter tips in 1cm²

iEPS thruster: Operation

- Emission current as a function of applied voltage
- Determines operational point of emitter

Low frequency polarity alternation Prevent electrochemical decay Maintain charge balance in propellant reservoir

Operate thrusters in pairs -> spacecraft neutralization + -

•

Previous propulsion modules

- Attitude control configuration
- Single axis propulsion module (2.1cm total height, ~100g, including PPU)
 - 50h continuous thrust test (Aerospace Corporation¹)
 - <2W, 50% total efficiency (low side to thrust)

¹) Krejci, D., Mier Hicks, F., Fucetola, C., Lozano, P., Hsu Schouten, A., and Martel, F., "Design and Characterization of a Scalable ion Electrospray Propulsion System," 34th International Electric Propulsion Conference, No. IEPC-20150149, Hyogo-Kobe, Japan, 2015.

Current thruster design

- Scalable propellant tank: liquid feed flow independent of tank saturation
- Robustness: Confinement of liquid during degassing process
- Nominal ion emission currents at <1000V

Current thruster efforts

- Scalable propellant tank
- Robustness
 - Static G
 - Vibration
 - Thermal cycling
 - Degassing

Current propulsion module design

- Targeting 1.5U Cubesats
- Attitude control capability
- Dynamic thruster paring

Engineering module

Thrust measurements (per emitter)

• Torsonal balance data recorded at NASA GRC

from: Krejci, Mier Hicks, Thomas, Haag, Lozano, Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs, submitted to AIAA Journal of Spacecraft and Rockets

Current iEPS vesion: characterization efforts

- Very high grid transparency: up to 99%
- Spatial beam distribution: Large opening angles ~60deg half opening angle

→ Strong effect on Isp and efficiency

- Retarding potential analysis (RPA)
 Energy efficiency
- Beam composition from Time of Flight: showed presence of droplets
 - \rightarrow Strong effect on Isp and efficiency

Current iEPS version efficiency summary

	emission polarity		
	positive	negative	
transmission efficiency η_{tr}	0.981 ± 0.006	0.982 ± 0.011	
angular efficiency $\eta_{ heta}$	0.801 ± 0.055	0.828 ± 0.045	
energy efficiency η_E	0.887 ± 0.061	0.912 ± 0.048	
polydispersive efficiency η_P	0.8859	0.8597	
Overall thruster efficiency η_T	0.606 ± 0.096	$\textbf{0.626} \pm \textbf{0.086}$	

$$\eta_T = \eta_i \eta_{tr}^2 \eta_\theta \eta_E \eta_p$$

• While efficiency is still high, presence of droplets and angular distribution decrease Isp significantly

Current S-iEPS version characterization summary

• Specific impulse (not accounting for beam spreading)

Experiment type	Comment	Specific impulse [s] ± standard deviation	Max. experiment error margin [s]
Longduration	Initial operation	1167 ± 21	±79
	172h average	1717	±112
Time of Flight	positive polarity	1150 ± 40	±188
	negative polarity	1247 ± 20	±168

True specific impulse: directly measured, combining thrust • measurements and propellant consumption measurements³ Specific impulse [s]

Interpolated

•	Thruster	efficiency:
---	----------	-------------

PPU: Peak efficienc

	Directly measu	ired	758.9 ± 40.7		
•			emissio	on polarity	
			positive	polarity	
	Overall thruster	efficiency η_T	0.606 ± 0.096	0.626 ± 0.086	
v:		Thrust [μN]	Current	[mA]	
<i>.</i>	Measured	74 ± 3.7	1.17	'5	

3) Krejci, Mier Hicks, Thomas, Haag, Lozano, Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs, submitted to AIAA Journal of Spacecraft and Rockets

 81.5 ± 4.1

Krejci et al, Apr 25, 2016 Pasadena, CA, Page 14

1.2

Future developments

- New emitter materials with controlled pore distribution
- Minimizes droplet contribution, increases Isp

2016/01/28 11:30 NL UD8.7 x1.8k 50 μm

iEPS alternative propellants

- Studied: EMI-DCA, EMI-GaCl4, EMI-Im
- Indicate significant capability for future improvements

Propulsion modules design studies

- Scalable tank design, emitter clustering
- Roll capability
- Change in emitter substrate material to achieve lifetime and increase performance

Massachusetts Institute of Technology

Propulsion modules design studies

- Increased delta V module
- Change in emitter substrate material to achieve lifetime and increase performance

Application

- GMAT simulations
 - 3U Cubesat baseline, dry mass 3kg
 - Isp=1150sec (still lots of room for improvement)
 - 2 thrust levels: 0.35mN and .7mN
 - Assuming perfect thrust vector alignment

Applications: LEO orbit raising

- 300km orbit raising to 700km, 51deg inclination
- Not accounting for drag in this simulation

Thrust [mN]	Burn time [d]	Propellant consumption [g]
0.35	20.6	55.3
0.7	10.7	55.3

• propulsion module $\sim 1/5$ of satellite

Applications: Elliptical launch orbit

• Assuming a launch opportunity similar to TESS

Thrust [mN]	Burn time [d]	Propellant consumption [g]
0.35	50	130.4
0.7	23	123.3

• propulsion module $\sim 1/4$ of satellite

Applications: Elliptical launch orbit

• Assuming a launch opportunity similar to TESS

Thrust [mN]	Burn time [d]	Propellant consumption [g]
0.35	50	130.4
0.7	23	123.3

• Reduces lifetime requirement

• propulsion module $\sim 1/3$ of satellite

Applications: GEO to lunar space Assuming piggyback to GEO, autonomous orbit raising to lunar space

- •
- Assumed thruster performance improvement to Isp=2500s •

Specific impulse [s]	Thrust [mN]	Burn time [d]	Propellant consumption [g]
1150	0.35	223	600
	0.7	112	600
2500	0.35	212.7	267
	0.7	108.2	267

propulsion module $\sim 1/2$ of satellite

Conclusion

- Current porous glass emitter cause droplet emission
- Are sufficient for significant LEO orbit raising capability with propulsion module ~1/5 of satellite
- Up-scaled modules with moderately improved emission properties (target Isp~1150s, achievable with decreased beam spreading) are capable to reach lunar space for suitable launch orbit with propulsion module $\sim 1/4-1/3$ of satellite
- Performance improvement to Isp~2500s (significant droplet content reduction and decreased beam spreading) allows autonomous orbit raising from GEO to lunar space, with propulsion module ~1/2 of satellite

Backup slides

• ~6000km approach

Backup slides

