

Inflatable Antenna for CubeSats: X-band Design

Alessandra Babuscia, Jonathan Sauder, Nacer Chahat (Jet Propulsion Laboratory, California Institute of Technology)

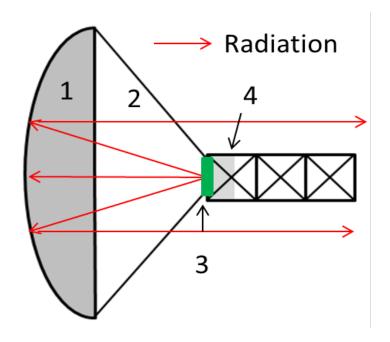
Aman Chandra, Jekan Thangavelautham (Arizona State University)

Interplanetary Small Satellite Conference 25th April 2016

NASA

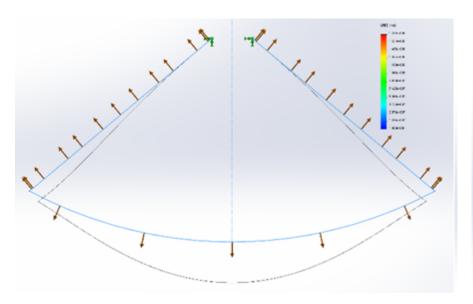
Outline

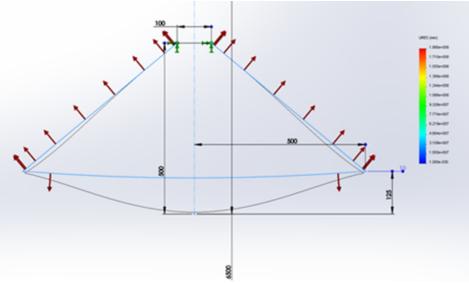
- Introduction
- Inflatable Antenna Concept
- Structural design
- Manufacture
- Photogrammetry
- Anechoic Chamber Test
- Inflation and Rigidization
- Conclusion and future work


Introduction

- As CubeSats are becoming a way to explore deep space in a more affordable way than traditional spacecraft, new needs emerge: telecommunication systems must be able to sustain a severely increased path loss.
- Different communication technologies are in development to approach this problem and to support interplanetary exploration with CubeSats and small satellites. Examples are: the IRIS radio, reflectarray antennas, deployable antennas, CDMA techniques, optical communication, MSPA (Multiple Spacecraft Per Antenna), and the inflatable antenna.
- The first inflatable antenna for CubeSats was designed at the S-Band
- We are currently designing it at X-Band

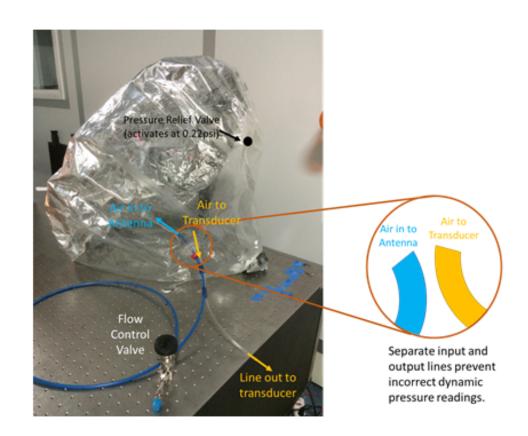
Inflatable Antenna Concept


- The inflatable antenna is a parabolic dish reflector (1 m) made of one side metalized mylar, one side clear mylar, and with a patch antenna as the feed.
- Initial simulations (without considering deformations due to over inflation and wrinkles) indicate a peak gain of 34 dBi.
- The inflatable antenna is unique as it provides
 - extremely high stowing efficiency (20: 1)
 - low mass (<0.5 Kg)
 - Scalability
 - inflation with sublimating powder.

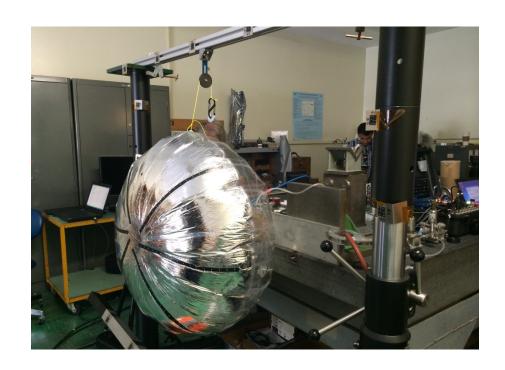


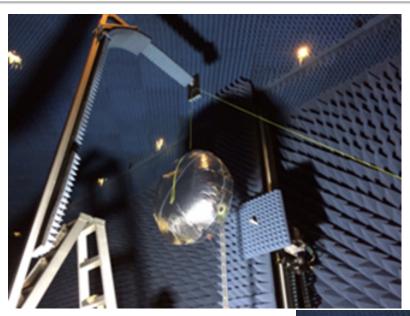
Inflatable antenna structural design

- The structural design is really challenging due to the non-linearity, the very thin membranes and the difficulty of models to characterize low pressure inflations
- Two initial designs were chosen for manufacturing from the simulation results.
- An undersized curved paraboloid surface → after pressurization it would deform to the spherical shape which approximated a parabola.
- An entirely flat shape → would be deformed by pressurization into a spherical surface which closed approximated a parabola. .

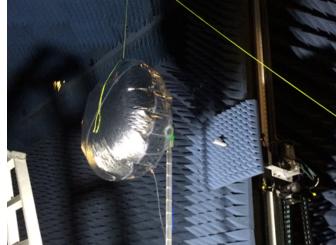


Antenna manufacturing

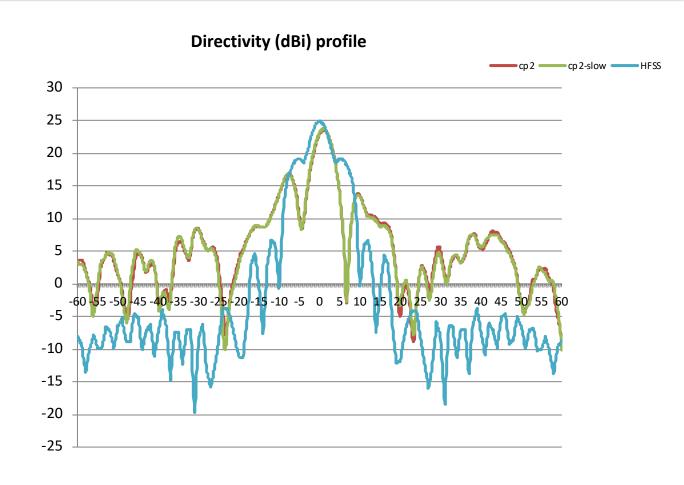

- The inflatable antenna membrane was manufactured by Meteorological Product Inc.
- A pressure input and pressure measurement couplings which connected to ¼" flex tubing were built into the antenna, along with a pressure relief valve to prevent over pressurizing the antenna.
- The pressure relief valve was designed to activate at 0.22 psi.


Photogrammetry

- The photogrammetry test was designed to test the impact of different pressure ranges on the curvature of the antenna.
- Pressure input was controlled manually, by a high sensitive valve, and pressure readings were made by using an Omega pressure transducer.
- A set of 3 photogrammetry cameras were used to determine the position of various photogrammetry targets, which were attached to the face of the reflector
- While the data was quite noisy, the flat antenna was found to have
 - the most predictable pressure vs. displacement curves
 - far less micro scale deformations (wrinkles) than the curved antenna.



Anechoic Chamber Test: Setup



Anechoic Chamber Test: Results

- The scan were taken at 0.197 psi.
- The predicted peak directivity was 24.9
- The measured peak was 24.2 dBi

Inflation and Rigidization

- An initial study was performed to identify the best sublimating compound for the antenna
 - Benzoic acid (baseline) was confirmed to be a good choice for sublimates
- Tests in the vacuum chamber were performed to characterize the inflation
- UV rigidization was studied to allow for inflight rigidization of the reflector

Vacuum Chamber Test

Test steps:

- The inflatable is evacuated of residual air at atmospheric pressure
- The inflatable is sealed and the vacuum chamber is then evacuated
- The chamber is held at a pressure of 10⁻⁵ torr.

Phases:

- A → air evacuation
- B→ peak due to redistribution of air locked pockets formed in Phase A
- C→ progressively pressure lowering
- D→ sublimation begins
- E-F \rightarrow equilibrium is reached (0.0026 Torr)
- The test has shown that inflation is achievable with 1 g of sublimating powder. Additional powder does not damage the antenna and can be used to generate additional gas in case of micrometeoroid perforation.

UV Rigidization

- Clear Mylar envelope (15 cm x 3cm) injected with UV resin P 6oo.
- The envelope was stretched and placed over a sublimate containing inflatable.
- Upon reaching vacuum and completing inflation, the envelope takes the curved shape and it is exposed to UV radiation.
- UV radiation takes up the induced curvature and forms a rigid glass like structure in approx. 2.5 hours.

Before inflation

After inflation

Before UV curing

After UV curing

An attempt to rigidize the entire shape

Conclusions and Future Work

- This paper describes the effort in developing an X-Band inflatable antenna for CubeSat.
- The structural analysis looked at the correlation between pressure and shape, discovering that only a very minimal pressure is necessary to inflate the antenna.
- The reflective part of the surface was designed as something less than parabolic.
- Two shapes were manufactured and tested at the photogrammetry laboratory
- The flat shape presented fewer wrinkles due to the differences in the manufacturing.
- The flat reflector was further tested in the anechoic chamber were a directivity of 24.1 dBi was measured (very close to the simulated value of 24.9 dBi).
- Regarding inflation, a review of the powders was performed to identify the most appropriate sublimate compound for the antenna and benzoic acid was chosen.
- Test in the vacuum showed that it is possible to inflate the antenna using sublimating powder and provided measurements of the pressure differential.
- The UV rigidization experiment is a preliminary effort in the process of rigidizing the antenna.
- Future work is focused on
 - Improving the EM characteristics of the antenna by trying to compensate for the lack of a perfect parabolic curvature on the reflector.
 - More studies and experiments on the rigidization process
 - A dynamic test to identify the effect of rotation and translation on the antenna structure

Thank you!