

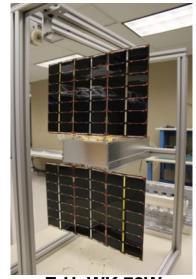
A Scalable Deployable High Gain Reflectarray Antenna - DaHGR

Presented by: P. Keith Kelly, PhD MMA Design LLC

MMA Overview

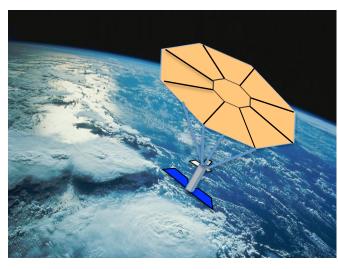
- Facilities in Boulder County Colorado
 - 10,000 SF facility
 - Cleanroom / Flight Lab
 - R&D Lab
 - Machine Shop
- Business Areas
 - Solar Array Systems
 - Deployable Antennas
 - Deployable Apertures and Structures
- Products
 - HaWK High Performance Solar Arrays
 - DaHGR high gain compact antenna
 - CubeSat Systems
 - dragNET De-orbit Modules

De-orbit System


HaWK CubeSat Solar Array

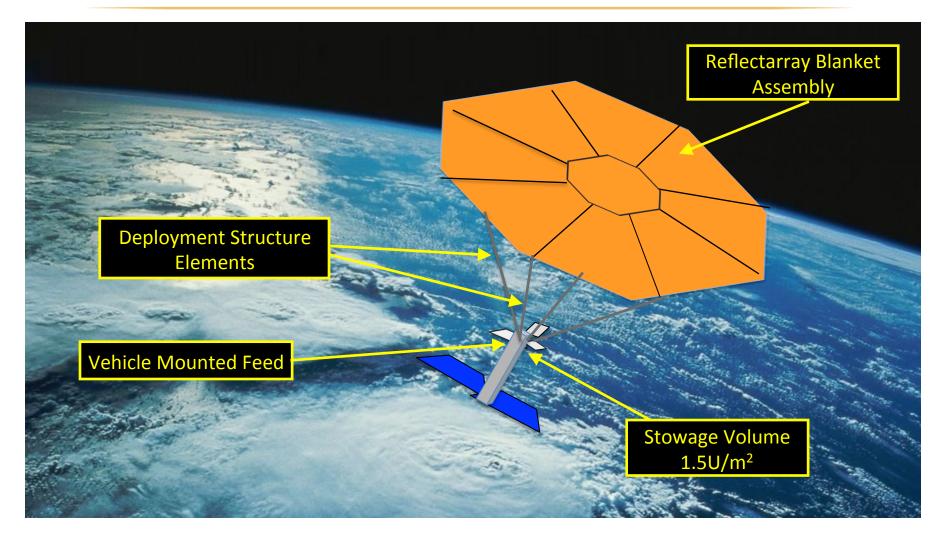
FalconSat-7 CubeSat

E-HaWK 72W



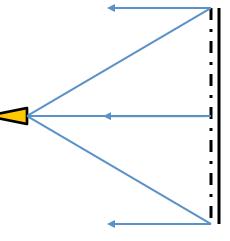
- DaHGR Overview
- What is a Reflectarray?
- Reflectarray Advantages
- DaHGR Performance
- Frequency range and Bandwidth
- Mission Concepts
- DaHGR Heritage/Risk
- Conclusions

DaHGR Overview


- MMA Design has been developing the DaHGR system under IR&D multiple patents pending
 - Our RF teams has heritage and world class expertise in reflectarray antennas
 - MMA has world class deployable structures technologies and expertise
 - Three DaHGR 1m to 3m antenna programs started in first quarter 2016
- DaHGR is a product that competes with a parabolic wire mesh reflector high gain antenna
 - Small stowed volume
 - Similar area mass with feed included
 - Fewer parts -1/3rd the parts
 - Lower cost -1/3 the cost
- Uses thin film reflectarray antenna and membrane technologies
 - High TRL
 - Leverages MMA's TRL-9 membrane deployment experience
 - TRL-9 dragNET De-Orbit system and launch restraints
 - TRL-8 FalconSat-7 diffractive membrane deployment
 - Flight heritage standoff boom composite tapes
 - Multiple frequencies up to Ka-band
- Printed reflectarray technology reduces cost and enables
 >3m² apertures on CubeSats

DaHGR

Deployable High Gain Reflectarray Antenna - DaHGR



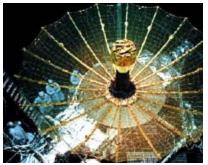
What is a Reflectarray?

- First described in the 1960's
- 1990's-2000's inflatable reflectarrays for space

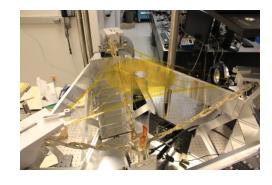
Reflectarray

- Collimation over narrow bandwidth (limited by electrical size, radiator properties, number of layers)
- Single or multiple flat surfaces conducive to small stowed volume

Parabolic Reflector


- Collimation over infinite bandwidth (limited by surface roughness)
- Precise parabolic profile requires many physical control features limiting stowed volume/size

Reflectarrays support any polarization and high power




Thin Membrane Reflectarray Advantages

- Cost
 - Less complex mechanical deployment system
 - Lower parts count
 - Less touch labor to assemble
- Small stowed size
 - 1 m diameter aperture in a 0.1m X 0.1m X 0.12m (1U) volume
- Meeting RMS tolerances with flat membrane surfaces is inherently less difficult than mesh/parabola systems
 - Increasing tension improves surface RMS
 - RMS vs Membrane thickness and tension

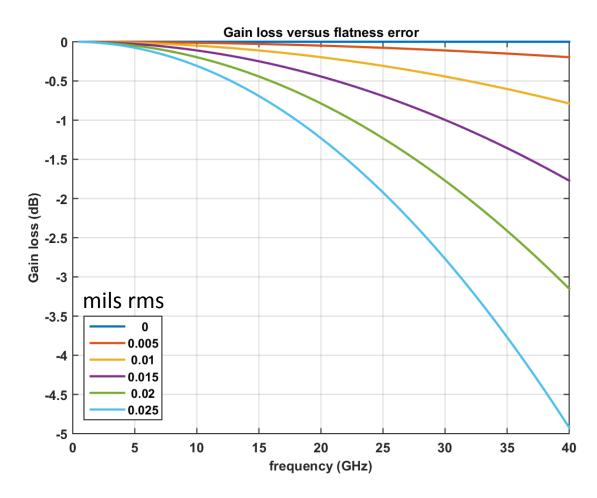
Harris Mesh Reflector

NG AstroMesh

MMA/USAFA FalconSat-7

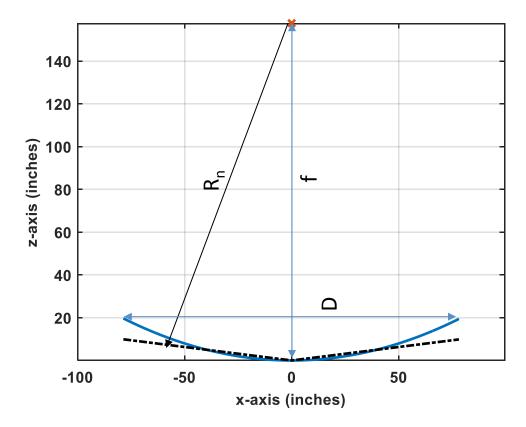
DaHGR Mechanical Performance

- Areal Compaction: approximately 1.5m²/L
- Mass Density: 1.0kg/m² @10m² to 1.6kg/m²
 @0.78m²
- First mode >1 Hz
- Low CTE structure
- On orbit adjustable feed to reflectarray geometry

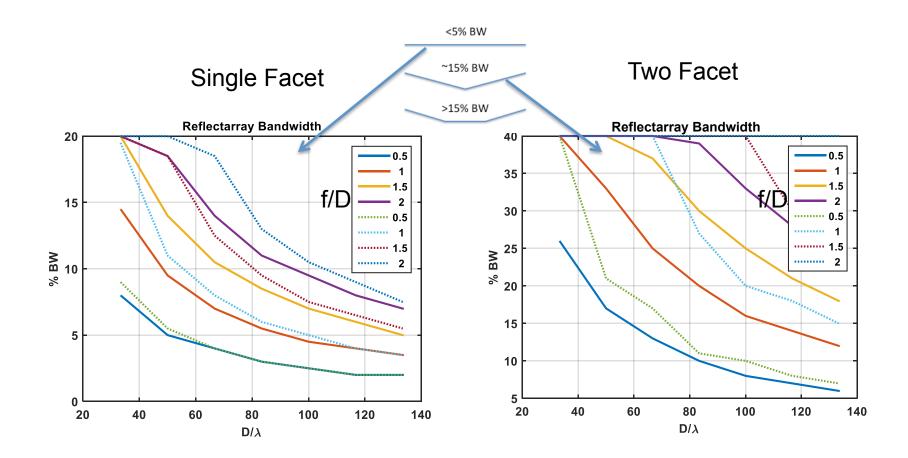


Frequency Range and Bandwidth for Small Sats

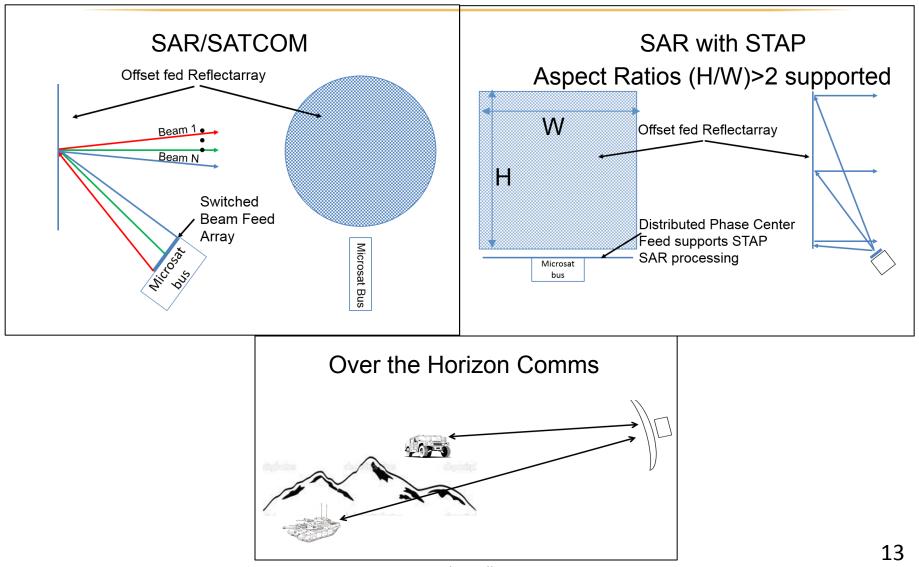
- Aperture sizes in development span 0.8 m to 5 m diameter
- Lower frequency limited by electrical size conducive to spatial feeding with minimal spillover losses ($^{D}/\lambda > 10$)
 - D=5m, λ =0.5m, lowest frequency is 0.6 GHz
 - At smaller electrical size, the deployment methods described support constrained feed antenna architectures.
- Highest frequency is limited by features controlling deployed flatness and allowance for Gain and sidelobe degradation
- Reflectarrays are inherently band width limited


Ruze's Equation for Reflectors

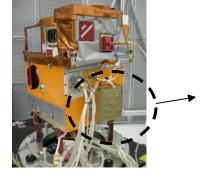
- Active area of research driven primarily by material thickness (membranes and metal).
- Current photogrammetry inspections of surfaces showing better than 25 mil rms.
- Near term work will quantify performance at Xband; we expect Ka band applications to be viable


Bandwidth Analysis Method

Path length variation (Rn) drives bandwidth of the system



1.0 dB Bandwidth (DaHGR)


Mission Concepts

DaHGR Heritage/Risk

- Combine two high TRL (9 and 7) to produce a high gain and cost effective antenna
- The deployment system is based on the 14m² Flight heritage dragNet de-orbit system
- Deployable thin film Ka and X band reflectarrays have been built and tested by NASA and its contractors
 - They used inflatables to deploy the array
 - The mechanical system in DaHGR is more robust

14m² dragNet De-orbit Module

1m X Band

3m Ka-Band Inflatable Reflectarray Antenna (RF Test and Inflation Test)

3m Ka-Band Inflatable Reflectarray Deployment Sequence

3m Ka Band

Conclusion

- Compared to conventional parabolic antennas-DaHGR is:
 - 1/3 the cost
 - 1/5th the volume
 - 1/3 the parts
- Reflectarrays enable new/expanded missions for SmallSats:
 - Expanded GEO communications
 - 2-4x RF aperture
 - Expanded "real estate" for secondary payloads
 - Enable High resolution/SmallSat DoD SAR/SIGINT missions and high capacity communications platforms
 - Launch on ESPA, Minotaur, Pegasus, Taurus, Alasa, SuperStrypi, etc.
- System TRL-9 expected in next 18-24 months on a CubeSat or other mission