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ASTEROID IMPACT MISSION (AIM) 

Small mission of opportunity to explore and demonstrate technologies for 
future deep-space missions while addressing planetary defense objectives 
and performing asteroid scientific investigations. 

TECHNOLOGY SCIENCE 
DEMONSTRATION 

ASTEROID IMPACT 
MITIGATION 



Two simple, independent and self-standing mission developments operated in 
coordination: 
• demonstrate the ability to modify the orbital path of Didymoon and measure 

the deflection by monitoring the binary´s orbital period change 
• measure all scientific and technical parameters to interpret the deflection and 

extrapolate results to future missions or other asteroid targets 

AIDA COOPERATION Asteroid Impact & Deflection Assessment 



AIDA COOPERATION 

→ opportunity: Didymos close approach in October 
2022 asteroid, target and impact date are fixed 

0.1 AU 



AIM PAYLOADS AND MISSION SCENARIO 
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CubeSat Opportunity Payload Inter-satellite 
Network Sensors (COPINS)  

• ASPECT (1x3U): to be released at approx. 10 km 
altitude, then entering orbit around Didymos (4 km 
sma) using electric propulsion 

• PALS (2x3U): to be released at 10 km or higher, 
then reaching stations at L4/L5, L2 and L1 

• DUSTCUBE (1x3U): to be released at an altitude 
between 2 and 4 km, then reducing orbital radius 
using either cold gas or PPT 

• CUBATA (2x3U): to be released at approx. 3 km 
altitude, then entering the same polar SSTO orbit 
around Didymos with 60 deg phase angle 

• AGEX (2x3U): ballistic release to achieve landing of 
1 cubesat and to position second cubesat to 
deploy 0.6 kg femtosats (chipsats) 
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MASCOT-2 LANDER 

• Size: 30 x 30 x 20 cm 
• Deployable solar generator cover (supports 

orientation and protects solar cells during 
touch-down) 

• 3 months operational lifetime 
• Landing site: Lander targeting equatorial 

region of Didymoon (±60 deg latitude band) 
• Carries low-frequency radar transmitter 

(deployable antennas)  

Signal to be captured by the AIM 
spacecraft will enable understanding the 
interior structure of the asteroid 



OVERVIEW OF THE GNC SYSTEM FOR AIM 

• GNC sensors and actuators are those typical of 
interplanetary missions that employ optical 
navigation: 

• Star-trackers, IMU, Sun-sensors, VIS 
navigation camera 

• Reaction-wheels, thrusters 

• MASCOT-2 release is the most challenging phase 
of the mission 

• Safety of the mission is critical 

• FDIR is key to guarantee safety 

• CAM capability based on VIS-only 
navigation means is required 
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AUTONOMOUS NAVIGATION CONCEPT FOR AIM 

• Relative navigation is used during descent for MASCOT-2 release 
• Navigation filters are initialised by ground using on-board measurments 

(by VIS camera, star-tracker, IMU), sent to ground and used to propagate 
S/C state 

• Navigation is switched to autonomous mode: feature tracking used to 
measure change in spacecraft pose between images 

• Harris corner detector for feature detection and KLT algorithm for tracking 
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CLOSED-LOOP GUIDANCE AND TRAJECTORIES 

• Closed-loop attitude guidance (based on images from VIS) is used to compensate 
for uncertainties in Didymos ephemeris knowledge 

• Relative trajectories are defined with the primary objective to ensure safety: 

• AIM must never be on a collision course with any of the asteroids 

• Three-body dynamics exploited to maximise the chances of successful 
MASCOT-2 landing, while being at safe distance from Didymoon 

• Trajectories in close-proximity phase composed of hyperbolic arcs to form 
“pyramid” orbits with respect to Didymain 
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MASCOT-2 RELEASE PHASE CONSTRAINTS 

• MASCOT-2 has no means of controlling its 
trajectory: ballistic deployment by AIM 

• The escape velocity on Didymoon is to be 
interpreted in the context of 3-body dynamics 

• Escape through L1 neck: 4.2 cm/s 

• Escape through L2 neck: 4.6 cm/s 

• As a goal, AIM must provide radio ranging of 
MASCOT-2 during its descent 

• As a goal, AIM must perform optical observations 
of MASCOT-2 during its descent 
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LESSONS LEARNED FROM ROSETTA/PHILAE  

• Release of the lander shall not put the 
orbiter at risk: collision-free trajectories 
must be used (also passively safe, i.e. no 
collision in case a manoeuvre is missed) 

• Assure continuous availability of optical 
navigation: this implies restrictions on the 
phase angle 

• Ensure periods without maneuvers for orbit 
determination (typically 4/8 hours) 

• Limit number of maneuvers autonomously 
executed 
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OBJECTIVES OF DESCENT TRAJECTORY DESIGN 

• Minimise landing velocity by inserting MASCOT-2 in a low energy trajectory 
in the 3-body dynamics (through L2 neck) 

• Minimise flight time while ensuring robustness to deployment position and 
velocity errors due to navigation and deployment mechanism (this limits 
the minimum velocity that can be achieved) 

• Ensure observations of Didymain during the first part of the descent (low 
enough phase angle) 

• Ensure observations of Didymoon before MASCOT-2 deployment (low 
enough phase angle, avoid occultation by Didymain and eclipses) 

• Achieve MASCOT-2 landing immediately after eclipse with good phase 
angle (to ensure MASCOT-2 observability during bouncing, then power 
generation) 

• Ensure that the angle between the release velocity and Didymoon surface 
is smaller than the VIS camera FOV (to allow taking images of MASCOT-2 
and surface of Didymoon during deployment and descent) 13 



MASCOT-2 DEPLOYMENT SCENARIO (1/2) 

• Ensuring visibility of Didymain first, then Didymoon 

• Low energy MASCOT-2 descent through L2 neck 
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red: occultation by Didymain 
black: eclipse 
cyan: Didymoon visibility 



MASCOT-2 DEPLOYMENT SCENARIO (2/2) 

• Select phase angle to ensure proper illumination conditions for  
continuous optical navigation (Didymain first, then Didymoon) 

15 



MASCOT-2 LANDING 

• MASCOT-2 is expected to bounce several times before coming at rest 

• Relocation mechanism to hop away from unsuitable landing spots 
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USE OF AIM SCIENTIFIC INSTRUMENTS AS GNC 
SENSORS: THERMAL IMAGER (TIRI), RADAR 
ALTIMETRY (HFR) AND LASER ALTIMETRY (OPTEL-D) 

• Thermal infrared images (TIRI) to aid vision-based 
camera when illumination conditions are unfavorable 

• Experiment to enhance navigation by use of thermal 
infrared images in approach phase, when distance to 
the asteroid is estimated based on angular size 

• Altimetry (HFR/OPTEL-D) information both to augment 
the measurements used by ground to initialise the 
navigation filter and by GNC in autonomous navigation 
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Degradation in 
vertical channel 
due to loss of 
features: can be 
compensated by 
direct observability 
through altimeter 



→ ASTEROID IMPACT MISSION 

www.esa.int/aim 

End of the presentation 
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Demonstrate the ability to modify the orbital path of Didymoon and measure the deflection by monitoring 
the binary´s orbital period change 
• Measure all scientific and technical parameters to interpret the deflection and extrapolate results to 

future missions or other asteroid targets 
• Correlate ground-based observations with in-situ measurements 

 
Demonstrate technologies for future deep-space missions: 

• Interplanetary optical communication 
• Deep-space inter-satellite links 
• µ-lander deployment in deep-space  
 

Answer fundamental questions on our Solar system: 
• are the collisional models describing formation and evolution of the Solar System valid? 
• what physical processes lie behind the formation of binary asteroids?  
• what is the internal and subsurface structure of the natural satellite of a binary NEA? 
• what links can be established between subsurface and the surface properties?  
• what are the mechanical properties of a small asteroid's surface?  
• what cohesion is there inside an aggregate in microgravity? 

 
 

AIM MISSON OBJECTIVES 



AIM LAUNCH SCENARIO 

Day in Launch window 1  6  11  16  21  

Liftoff Date  2020/10/17  2020/10/22  2020/10/27  2020/11/1  2020/11/6  

Escape vel. [km/s]  5.191  5.042  4.994  5.034  5.154  

Escape R.A. [deg]  136.5  132.6  128.3  124.3  120.9  

Escape dec. [deg]  22.8  24.3  25.9  27.4  28.9  

DSM date  2020/12/20  2020/12/16  2020/12/20  2020/12/25  2020/12/29  

DSM size [m/s]  95  97  118  159  227  

SAA [deg]  101.0  104.8  113.5  124.9  138.0  

Sun distance [AU]  1.13  1.11  1.12  1.14  1.15  

EAA [deg]  127.9  133.8  134.6  139.2  147.2  

Earth distance [AU]  0.17  0.15  0.15  0.16  0.17  

Idealized Arrival   2022/4/24   

Insertion [m/s]  1155  1153  1132  1091  1022  

Total Δv [m/s]   1250   

Transfer duration [d]  554  549  544  539  534  



INTERPLANETARY TRANSFER 



DIDYMOS ARRIVAL 

Case  LPO  LPC  

Manoeuvre 1 date 2022/4/19  2022/4/15  

Manoeuvre 1 size [m/s]  546  338  

Manoeuvre 2 date:  2022/4/26  2022/4/22  

Manoeuvre 2 size [m/s]  496  306  

Manoeuvre 3 date:  2022/5/3  2022/4/29  

Manoeuvre 3 size [m/s]  76  204  

Manoeuvre 4 date:  2022/5/10  2022/5/6  

Manoeuvre 4 size [m/s]  25  117  

Manoeuvre 5 date:  2022/5/17  2022/5/13  

Manoeuvre 5 size [m/s]  13  58  

Total Δv [m/s]  1155  1023  



P4  
Lander phase: 
Deploy MASCOT2 
lander 

            P2 
“Early” characterization: 
- High-resolution surface images 
- Optical communication experiment 

CLOSE PROXIMITY ASTEROID OPERATIONS 
29 May 2022 – 25 December 2022 

P1 
Rendezvous phase with 
Didymos transition P2 
co-flying position. 

P5 
DART impact observation 

35 km 

~100 km 

P3 
First detailed characterization: 
Thermal Infrared imaging 
High-frequency radar sounding of surface 
and shallow-subsurface 

P6 
Second detailed characterization: 
- High-frequency radar  
- Low-frequency radar to sound deep interior structure 
- Crater imaging 

<<1 km 

10 km 



COPINS concept 1: VTT (near-IR spectral measurement, 
1x3U)  
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COPINS concept 2: Swedish Institute of Space Physics 
(magnetometer, volatiles, camera, 2x3U)  
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COPINS concept 3: University of Vigo (nephelometer, 
1x3U) 
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COPINS concept 4: GMV (radioscience, imaging, 
seismology, 2x3U)  
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COPINS concept 5: Royal Observatory of Belgium 
(Seismometer, cameras, gravimeter + chips, 2x3U)  
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