

Space mission and instrument design to image the Habitable Zone of Alpha Centauri

αCenA

Eduardo Bendek¹ (D-PI) eduardo a bendek@nasa.gov , Ruslan Belikov¹ (PI), Sandrine Thomas¹, Julien Lozi², Sasha Weston and the ACESat team (Northrop Grumman Xinetics / Space systems Loral) αCenB

1 NASA Ames Research Center, 2 Subaru Observatory

ISSC 2015, April 2015

1

α Cen AB: a Unique Opportunity for small optical space telescopes

Why Alpha Centauri?

- Alpha Centauri is a our closest star and the only one accessible where the Habitable Zone is accessible to a 30cm class telescope
- The system is binary and therefore it double the probability of finding a earth like planet reaching close to 50% chances according to latest Kepler statistics.
- An earth –size planet has been found in 2012, aCen Bb, but is too close to the star. This increases the likelihood of a earth-like planet in the HZ of the star.

Other science cases

ACESAT will be also able to measure the exozodiacal light at Alpha Centauri and some other nearby stars. This is critical for other NASA mission design.

α Cen AB: a Unique Opportunity for small optical space telescopes

Simulation of a (hypothetical) Earth twin at quadrature around every nearby star

- Example: aCenA Earth twin with a 30cm telescope at 500nm:
 - separation: 0.92"
 = 2.7 λ/D
 - flux: ~1 photon per minute for ~10% end-to-end QE (roughly same as for flagship telescope looking at Earths 10pc away)
- αCen is in a class
 of its own: any
 other star requires
 a >3x larger (>
 10x more
 expensive)
 telescope

2.7 λ /D for 30cm telescope

Scientific requirements

Goal: Image 0.5 to 2.0 $\rm R_e$ planets' equivalent brightness, in the HZ of aCen A&B during a 2 year mission

ISSC 2015, April 2015

Credit: Billy Quarles, NASA Ames

Alpha Centauri Exoplanet Satellite (ACESat) Mission Overview

ACESat will directly image and characterize the planets and circumstellar debris disks of Alpha Centauri A & B, with the specific objective of identifying potentially habitable Earth-like planets.

Mission Time Life and Orbit	SMEX-Class, 2-Years (>90% completeness), Earth trailing	
Spacecraft Bus	LADEE Type, Secondary Payload to GTO	
Instrument/Telescope	Unobstructed 45cm, Full Silicon Carbide	
Coronagraph architecture	Baseline: PIAA Embedded on Secondary and tertiary telescope mirror. PIAACMC backup	
Coronagraph performance	1x10 ⁻⁸ raw	6x10 ⁻¹¹ [@] 0.4" (With ODI) 2x10 ⁻¹¹ [@] 0.7"
Field of View (OWA)	2.5" x 2.5"	
Imaging detector	1k x 1k EMCCD 0.08"/px Sampling	
Wavelength	400 to 700 nm, Dichroics 5 bands @ 10% each.	

Instrument Building blocks

45 cm off-axis telescope with an **embedded** PIAA -> $10^{-5}(1.6 - 10\lambda/D)$

Instrument Building blocks

45 cm off-axis telescope with an **embedded** PIAA -> $10^{-5}(1.6 - 10\lambda/D)$

WFC (Multi-Star Wave Front Control) -> 10⁻⁸

Instrument Building blocks

45 cm off-axis telescope with an **embedded** PIAA -> $10^{-5}(1.6 - 10\lambda/D)$

WFC (Multi-Star Wave Front Control) -> 10-8

Continuous observation ODI -> 10-11

ISSC 2015, April 2015

Optical and system design

ISSC 2015, April 2015

Multi-Spectral Imager

- Wavelength: **400 nm to 700 nm** (Contains 40% aCen A flux)
- Five channels of 10% bandwidth each.
- SW (400nm): Blue rayleigh scattering indicates earth-like atmosphere. (Const. coatings and QE)
- LW (700): CH₄ absorption bands. Limited by QE and WFC bandwidth.

- E2v EMCCD 201-20 almost zero RON
- Short 10s

 exposure
 time to avoid
 cosmic rays

Telescope Hardware

- Full SiC 45cm, Off-axis telescope, L/25 max end-to-end WFE (Total 45Kg mass)
- Active thermal control to maintain 10°C operation with 0.1°C PV stability
- 0.5mas RMS stability LOWFS (Demonstrated for CAT III EXCEDE Lockheed Martin)

Mission operations

High stability pointing spacecraft Unperturbed observation per quarter,

1.6 days/band/star

Quarterly operations:

- **DSN Downlink** and reaction wheels desaturation and quarter end.
- 90° Roll to keep sunshield in position
- **Calibration** per quarter (Speckle MSWC, LOWFS).

αCEN Α

αCEN Β

Conclusion

1) We developed an instrument design to achieve the science goals

2) We developed a mission concept that satisfies instrument stability requirements

3) We are advancing key technologies (PIAA, DM, WFC, Post-processing) for ACESat and other direct imaging missions (AFTA-C, EXO-C, EXCEDE)

aCen A&B

ISSC 2015, April 2015

Image credit: Juan Nabzo, Jan 5th 2015, Chilean Patagonia