Ice Cube Lunar Orbiter with BIRCHES (Broadband InfraRed Compact High-Resolution Exploration Spectrometer)

**NEXTSTEP LunarCubes Mission and Instrument Concept** 

P.E. Clark, IACS/CUA/NASA GSFC and Flexure Engineering, Science PI

B. Malphrus, Morehead State University, PI

Morehead State University: B. Twiggs, Jeff Kruth, Kevin Brown, R. McNeill, B. Kroll NASA/GSFC: A. Mandell, R. MacDowall, C. Brambora, D. Patel, S. Banks, D. Folta, P. Calhoun, P. Coulter Busek: K. Hohman, V. Hruby

Next Step Selectee Announced March 30, 2015!

4/28/15

Clark etal ISmallSat 2015 IceCube

#### Why Lunarcubes?

Using the Cubesat paradigm to build user requirements driven 'pathfinders' for low-cost multiplatform mission concepts that will ultimately provide next generation exploration through the use of temporal and spatially distributed measurements.

Providing access to deep space via the Moon as nearby analogue, technology testbed, and gateway to the solar system.

Providing a low-cost alternative for high science yield missions at a time of declining funding and increasing costs for conventional missions.

Taking advantage of the decade long evolution of the cubesat model from standardized kits to science-driven, multi-institutional, multi-platform collaborations for LEO applications.

Examining the use of cubesat hardware/software for missions that are a representative cross-section of lunar, Mars, and other applications at varying degrees of difficulty (flyby, probe, orbiter, lander).

identifying modifications and new technology needed to support a science-driven deep space mode.

Looking for NASA to expand the CubeSat Launch Initiative which provides launch opportunities for cubesats to LEO as secondaries at no cost, to GEO and beyond.

designing a deep space prototype bus, and prototype for a lunar orbiter missions.

Building on the exploding interest in cubesat as seen in growing popularity of our LunarCubes Workshops over the last 3 years. Clark etal ISmallSat 2015 IceCube

### Science Goals Understanding the role of volatiles in the solar system

- Enabling broadband spectral determination of composition and distribution of volatiles in regoliths (the Moon, asteroids, Mars) as a function of time of day, latitude, regolith age and composition.
- Providing geological context by way of spectral determination of major minerals.
- Enabling understanding of current dynamics of volatile sources, sinks, and processes, with implications for evolutionary origin of volatiles.

IceCube addresses NASA HEOMD Strategic Knowledge Gaps related to lunar volatile distribution (abundance, location, transportation physics water ice).

IceCube complements the scientific work of Lunar Flashlight by by observing at a variety of latitudes, not restricted to PSRs

4/28/15



While M3 provided a 'snapshot' mosaic of lunar nearside indicating surface coating of OH/H<sub>2</sub>O (blue) near the poles,

Early evidence for diurnal variation trend in OH absorption (Sunshine et al. 2009)

LCROSS provided evidence of additional subsurface volatiles.

IceCubewillextend'snapshots'togeospatiallylinkedtimeofdaylatitude coverage.



| Table B.2 II<br>LCROSS pl | R measured vola<br>ume (Colaprete | tile abundance in<br>et al, 2010) |
|---------------------------|-----------------------------------|-----------------------------------|
| Compound                  | Molecules cm <sup>-2</sup>        | Relative to $H_2O(g)^*$           |
| H2O                       | 5.1(1.4)E19                       | 100%                              |
| H2S                       | 8.5(0.9)E18                       | 16.75%                            |
| NH3                       | 3.1(1.5)E18                       | 6.03%                             |
| SO2                       | 1.6(0.4)E18                       | 3.19%                             |
| C2H2                      | 1.6(1.7)E18                       | 3.12%                             |
| CO2                       | 1.1(1.0)E18                       | 2.17%                             |
| CH2OH                     | 7.8(4.2)E17                       | 1.55%                             |
| CH4                       | 3.3(3.0)E17                       | 0.65%                             |
| OH                        | 1.7(0.4)E16                       | 0.03%                             |
| *Abundance                | e as described in                 | text for fit in Fig 3C            |
| ₩                         |                                   | 5                                 |

- Broadband IR spectrometer with HgCdTe and compact line separation (LVF)
- Compact microcrycooler to ≤ 120K to provide long wavelength coverage
- compact optics box designed to remain below 220K
- OSIRIS Rex OVIRS heritage design



| Species                      | μm                                                                          | description                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|-----------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Form, Component        | 1                                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| water vapor                  | 2.738                                                                       | OH stretch                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.663                                                                       | OH stretch                         | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| liquid water                 | 3.106                                                                       | H-OH fundamental                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.903                                                                       | H-OH fundamental                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 1.4                                                                         | OH stretch overtone                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 1.9                                                                         | HOH bend overtone                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.85                                                                        | M3 Feature                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.9                                                                         | total H2O                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hydroxyl ion                 | 2.7-2.8                                                                     | OH stretch (mineral)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.81                                                                        | OH (surface or structural)         | i de la constante de la consta |
|                              |                                                                             | stretches                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.2-2.3                                                                     | cation-OH bend                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 3.6                                                                         | structural OH                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| bound H2O                    | 2.85                                                                        | Houck et al (Mars)                 | 0.090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 3                                                                           | H2O of hydration                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2.95                                                                        | H2O stretch (Mars)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 3 14                                                                        | feature $w/2.95$                   | Water V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| adsorbed H2O                 | 2.9-3.0                                                                     | R. Clark                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ice                          | 1.5                                                                         | band depth-layer correlated        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 2                                                                           | strong feature                     | 2600 2800 3000 3200 3400 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | 3.06                                                                        | Pieters et al                      | Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other Volatiles              |                                                                             |                                    | wavelength (him)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NH3                          | 1.65, 2, 2.2                                                                | N-H stretch                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CO2                          | 2, 2.7                                                                      | C-O vibration and overtones        | 1 Ice Cube measurements will not cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H2S                          | 3                                                                           |                                    | off (Dieters et al. 2000) but encompas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CH4/organics                 | 1.2, 1.7, 2.3.                                                              | C-H stretch fundamental and        | on (riccers et al. 2009) out encompas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | 3.3                                                                         | overtones                          | the broad 3 up band to distinguis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mineral Bands                |                                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pyroxene                     | 0.95-1                                                                      | crystal field effects, charge      | 1 overlapping OH, water, and ic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                            | 1.5                                                                         | transfer                           | factures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| olivine                      | 1, 2, 2.9                                                                   | crystal field effects              | 1 realures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| spinels                      | 2                                                                           | crystal field effects              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| iron oxides                  | 1                                                                           | crystal field effects              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| carbonate                    | 2.35, 2.5                                                                   | overtone bands                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| sulfide                      | 3                                                                           | conduction bands                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hydrated silicates           | 3-3.5                                                                       | vibrational processes              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| anticipate wavelength of pea | k for water al                                                              | sorption                           | 1 · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| hand would be structural<br> | ound <adsorbe< td=""><td><br/>d<ice< td=""><td></td></ice<></td></adsorbe<> | <br>d <ice< td=""><td></td></ice<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4/28/15                      | Junu -uusoi DC                                                              |                                    | 5 IceCube 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

7

4/20/15

1

٠, di

State - Mar





**IceCube** utilizes a minimal DV transfer trajectory harnessing expertise of GSFC flight dynamics. **IceCube** lunar capture and science orbit designed by experienced GSFC flight dynamics team.

| IceCube versus Previous Missions |                                   |                     |  |
|----------------------------------|-----------------------------------|---------------------|--|
| Mission                          | Finding                           | IceCube             |  |
| Cassini VIMS,                    | surface water detection, variable | water & other       |  |
| Deep Impact                      | hydration                         | volatiles, fully    |  |
| Chandra                          | H2O and OH (<3 microns) in        | characterize 3 µm   |  |
| M3                               | mineralogical context nearside    | region as function  |  |
|                                  | snapshot at one lunation          | of several times of |  |
| LCROSS                           | ice, other volatile presence and  | day for same        |  |
|                                  | profile from impact in polar      | swaths over range   |  |
|                                  | crater                            | of latitudes w/     |  |
| LP, LRO,                         | H+ in first meter (LP, LEND) &    | context of regolith |  |
| LEND                             | at                                | mineralogy and      |  |
| LAMP                             | surface (LAMP) inferred as ice    | maturity, radiation |  |
| DVNR                             | abundance via correlation with    | and particle        |  |
| LOLA                             | temperature (DIVINER), PSR        | exposure, for       |  |
| LROC,                            | and PFS (LROC, LOLA), H           | correlation w/      |  |
| LADEE                            | exosphere (LADEE)                 | previous data       |  |

#### **Busek Iodine ion propulsion system**



CubeSat Compatible Ion Propulsion PPU; (from top) DCIU, Housekeeping, Cathode/Valve, Grid HV, RF Generator & Power Ampilfier 

1/16" Subminiature Electride Cathode as ion Beam Neutralizer; Heateriese, 5W Nominal



lodine Propellant Stored æ Solid Crystals; 300m Torr Storage Pressure

Busek 3cm RF Ion

Thruster (BIT-3); 8 0W

Nominal System Input

Maxon RE-8 DC Motor (2x for 2-Axis Stage); Flight Qualified, 0.5W

Clark etal ISmallSat 2015 IceCube

#### **Bus Components**

**Thermal Design: with minimal** radiator for interior the small form factor meant that interior experienced temperatures well within 0 to 40 degrees centrigrade, except for optics box which has a separate radiator.

**Communication, Tracking**: X-band, JPL Iris Radio, dual X-band patch antennas, X-band dish (trade availability, cost, dB, and DSN compatibility, live with the fact this hasn't flown in deep space)

**C&DH**: very compact and capable Honeywell DM microprocessor, at least one backup C&DH computer (trade volume, complexity, cubesat heritage, live with the fact this hasn't flown in deep space)

**GNC/ACS**: multi-component (star trackers, IMU, RWA) packages with heritage available, including BCT XB1, which can interface with thrusters (trade cost, volume, cubesat heritage, live with the fact this hasn't flown in deep space)







4/28/15

#### IceCube Concept: Morehead CubeSat Bus



Table 4: Lunar IceCube Subsystems

| System                                                                | Mass                                                | Volume (in Us)                                              | Power Use                                | Rad<br>Tolerance                              | Dollars*          | Source                        |
|-----------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------|------------------------------------------|-----------------------------------------------|-------------------|-------------------------------|
| Structures, Thermal<br>Management                                     | 1.2 kg                                              | 6U Exterior & Rings                                         | N/A                                      | N/A                                           | 69K               | MSU                           |
| C&DH: Proton 200K Lite/<br>Custom Daughter<br>BCT XB1 for ACS Control | 0.36 kg                                             | 0.75 U                                                      | 5 W                                      | >100 krad                                     | 240K              | Space Micro<br>BCT XB1<br>MSU |
| Harnesses, cables,<br>coatings, elastomerics                          | 0.5 kg                                              | Conformal w/in structure                                    | N/A                                      | N/A                                           | 12K               | MSU                           |
| Power (Solar panels &<br>Gimbals<br>MMA HaWK 72 W Array               | 0.340kg x 2 Deployed<br>0.190kg x 2<br>Fixed (Side) | Deployable panels<br>intrude 10 mm into<br>structure (each) | N/A                                      | TBD                                           | 185K              | MSU + MMA                     |
| Solar Panel Drive<br>Articulators<br>HoneyBee SADA                    | 0.40 kg x 2                                         | 10 x 10 x 0.65 cm (Each)<br>(0.25U)                         | 5 W                                      | 10 krad                                       | Included<br>Above | Honeybee<br>Robotics-<br>MMA  |
| EPS + Batteries<br>MSU + TBD                                          | 2.4 kg                                              | 0.5 U                                                       | Quiescent Draw<br>= 10 mW                | > 10 krad                                     | 36K               | MSU                           |
| Propulsion: Busek BIT-<br>3cm RF Ion Iodine                           | 2.5 kg                                              | 2U                                                          | 60W                                      | TBD                                           | 1,000K            | Busek                         |
| ACS/GNC: BCT XB1                                                      | 2.1 kg                                              | 0.75 U                                                      | 6.3W Cont.                               | TBD                                           | 250K              | BCT XB1                       |
| Comms: JPL Iris                                                       | 0.5 kg                                              | 0.5U + Antennas                                             | 12.8 W-<br>Transponder<br>6.4 W- Receive | 50 krad                                       | 500 K             | JPL IRIS                      |
| IR Spectrometer                                                       | 0.62 kg                                             | 1.5 U                                                       | <5 W                                     | TBD                                           | In budget         | GSFC                          |
| Payload Processor: DM                                                 | 0.350 kg                                            | 10 x 10 x 4 cm<br>(0.25U)                                   | 2 W per<br>processor<br>continuous       | Multiple<br>processors<br>(8) &<br>middleware | 68K               | MSU/Honey<br>well             |

4/28/15

1. 1.

# The Next Frontier: CubeSats for Deep Space 3<sup>rd</sup> International Workshop on LunarCubes November 13-15, 2013 – Palo Alto, CA

### Lunar Science Illuminating the Universe

## 1<sup>st</sup> International Workshop on Scientific Opportunities in Cislunar Space







# **BACKUP SLIDES**



Clark etal ISmallSat 2015 IceCube

### **Spectrometer Components**



BIRCHES utilizes a compact Teledyne H1RG HgCdTe FPA and JDSU linear variable filter detector assembly leveraging OSIRIS REx OVIRS.



Adjustable Iris maintains footprint size at 10 km by varying FOV regardless of altitude



BIRCHES block diagram illustrates simplicity and flexibility of design.

Off the shelf tactical cryocooler with cold finger to maintain detector at ≤140K

#### **Bus Components**

#### Power:

compactly packaged Li-based batteries (e.g., GOM) that provide adequate power storage for longest 'eclipse' of sun in orbit;

electrical power system, for which many cubesat heritage options are available

Deployable solar panels, for which a number of choices are available (from top to bottom, turkey tail, cross, table, gimballed version of cross). Producers include MMA Design, Honeybee Robotics) Require >50 W running an active propulsion system, which should be more than adequate for other needs when propulsion system isn't running.

trade space cost, mass, reliablity, although volume of solar panels is in the 'cheat space' and doesn't count against 6U total









| EM1 Selectees to Date            |                                                                                  |                                                         |                                     |
|----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|
| Program                          | Target, Description                                                              | Payload                                                 | Lead                                |
| HEOMD NEXT<br>STEP               | Moon, orbiter, Ice Cube                                                          | broadband IR cryocooled.                                | Morehead State<br>U/NASA GSFC/Busek |
| HEOMD AES                        | Lunar Flashlight orbiter. (Surface ices<br>in permanently shadowed 'cold traps') | NIR instrument.                                         | JPL                                 |
| HEOMD AES                        | Near Earth Asteroid Scout                                                        | Imager to characterize asteroid dynamics and surface    | JPL                                 |
| HEOMD AES                        | BioSentinel                                                                      | Radiation Exposure Induced<br>Genetic Damage Experiment | NASA/Ames                           |
| HEOMD NEXT<br>STEP               | ??                                                                               | ???                                                     | Lockheed Martin                     |
| SMD SIMPLEx                      |                                                                                  |                                                         |                                     |
| STMD<br>Centennial<br>Challenges |                                                                                  |                                                         |                                     |

-

Overarching Question: Considering the science priorities and resulting range of science investigations, and the range of potential payloads, what does a 'lunarcube' platform look like? 6U, needs robust propulsion system (>1.5 km/sec delta V) mostly to achieve desired orbit from lunar capture, can carry up to 2U payload, >60W power desirable, needs robust thermal protection design, requires 1 year plus

Design Challenge 2 Cubesat Concepts to Cubesat Missions: Applied to this concept

1) Overview science, investigation, operational concept and principal drivers (needs) volatiles study, low periapsis elliptical inertially orbit, thermal design and mobility

2) Trade space (prioritized needs for which optimized capabilities are needed versus resources (volume, cost, bandwidth) available)? More robust and compact ACS, Comm, Power systems available but at cost.

**3)** What are your perceived performance limitations, risks, and descope options? Bandwidth limited (comm), delta V limited (but focused mission achievable), thermal design challenging and would be improved with 'smart' materials and mechanisms. Radiation exposure risk involving use of RHBD hardware/software and more reliable parts sources. Descope involves taking data on way down to final orbit, baseline is 3 months (rather than 6) in that orbit.

4) Link science objective, measurement, instrument requirements, mission requirements, science product (see chart)

4/28/15