

Photovoltaic Electrolysis Propulsion System (PVEPS)

Ramana Kumar Pothamsetti Jekan Thangavelautham

Space and Terrestrial Robotic Exploration Laboratory School of Earth and Space Exploration Arizona State University

Motivation

Challenges

- Small volume and mass
- Extreme temperature
- Pressure restriction in storage tanks
- Limited power for electric propulsion

Objective

Evaluate the feasibility and preliminary design of Photovoltaic Electrolysis Propulsion System (PVEPS) for interplanetary CubeSat missions.

Methodology

• Preliminary Feasibility analysis of PVEPS

- Analytical calculations
- Physical Experiments
- Preliminary propulsion system design

Schematic of PVEPS

PEM Electrolyzer

SpaceTREX

Previous Research

- Water Rocket (Militksy, Weisberg et al., 1999)
 - Zero 'g' Electrolyzer
 - **50, 100, 200W** Variants
 - Flexible H₂ thrusters
 - Use of Unitized
 Regenerative Fuel
 Cell (URFC)

Previous Research

Electrolysis Propulsion for 3U CubeSat (Peck and Zeledon, 2011)

fficiency (%)

- Orbit raising
- Experiments on various electrolyzers
- Separation of gas from water

Efficiency Comparison

System Concept

System Operation

Lower segment rotates to separate water from reactants

System Performance

For short pulses
$I_{sp} = 360s$

- For a 6U CubeSat
 - Total Mass 14 kg
 - Dry Mass 4.5 kg
 - $\Delta V = 4000 \text{ m/s}$

То	Required ∆V
Low Lunar Orbit	4040 m/s
EML – 1	3770 m/s
EML - 2	3430 m/s

Sutton, George P., and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion Elements. 8th ed. Wiley. 301-305. Print.

Thermal Requirements for 6U CubeSat in LEO

	Tank	
	Temperature	Heat Energy
Condition	(K)	Required(J)
One Side Illuminated	260	25
Three Sides		
Illuminated	290	1
Three Sides		
Illuminated, Albedo		
and Infrared	320	-18
Eclipse	170	80

Freezing Point Depression

- Electrolytes Chosen (Meewisse and Ferreira, 2001)
 - 10% LiCl Solution
 - 20% LiCl Solution
 - 20% NaCl Solution

List of Experiment

- Hydrogen Production Rate for PEM Electrolyzer
 - Distilled Water at STP
 - 10% LiCl, STP, -5°C and -10°C
 - 20% LiCl, STP, -5°C and -10°C
 - 20% NaCl, STP, -5°C and -10°C

Experimental Setup

Results – Maximum Hydrogen Output

Results – Input Power For Peak Performance

Summary

System	$\Delta \mathbf{V}$	Thrust	Thermal	Safety	Restrictions
	(m/s)	(N)	Insulation		
PVEPS	4000	8.5	Void	Separation of	Propellant
(H ₂ O)				$H_2 \& O_{2.}$	Mass
Zeldon & Peck	850	5	Needed	H ₂ and O ₂	Earth's
(H ₂ O)				stored as	gravity well
				Mixture	
AeroJet	550	4	Needed	Highly toxic	Operating
RocketDyne				propellant	Temperature
(Hydrazine)					
Cold Gas	20	1.5	Needed	Inert	Pressure
Thruster (N ₂)				Propellant	dependent

Conclusion

- Electrolysis Propulsion offers highest ∆V compared to current commercial systems for CubeSats.
- PVEPS offers increased operational flexibility due to its design.
- Freezing point depression requires much less power than thermal insulation.
- In scenarios of extreme cold temperature, freezing point depression will remain the only viable solution.

Future Work

- Thrust Chamber Evaluation
- PEM Electrolyzer Evaluation at lower temperatures to the tune of -200°C
- Additive Materials Evaluation to decrease rate of corrosion on electrodes.

References

- [1] Gunter, Derik. Cubesat. Digital image. Gunter's Space Page. 2008. Web.
- [2] H, Heidt, and Puig-Sauri J. "CubeSat: A New Generation of Picosatellite for Education and Industry Low-cost Space Experimentation." (2000). Web.
- [3] Zeledon and Peck, "Electrolysis Propulsion for CubeSat-Scale Spacecraft," AIAA SPACE (2011). Web.
- [4] Sarda, K., Cordell, G., Eagleson, S., Kekez, D. D., and Zee, R. E. "Canadian Advanced Nanospace Experiment 2: On-Orbit Experiences With a Three-Kilogram Satellite," (2008). Web.
- [5] ATK Alliant Techsystems Inc. ATK Space Propulsion Products Catalog; Elkton, MD, (2008). Web.
- [6] Boyce, Bob. Understanding Electrolysis. Digital image. Free Energy. Web.
- [7] F, Militksy, Weisberg A.H, Carter P.H, Dittman M.D, B.Myers, Humble R.W, and Kare J.T. "Water Rocket Electrolysis Propulsion and Fuel Cell Power." (1999). Web.
- [8] Auweter-Kurtz, M., and B. Glocker. T. Goelz, H. L. Kurtz, E. W. Messerschmid, M. Riehle, and D. M. Zube."Arcjet Thruster Development." Journal of Propulsion and Power 12.6 (1996): 1077-083. Web.
- [9] Militsky, F. Unitized Regenerative Fuel Cell. Digital image. Unitized Regenerative Fuel Cell. 1 Jan. 1996. Web.
- [10] Militsky, F., B. Myers, and A.H Weisberg. "Lightweight Pressure Vessels and Unitized Regenerative Fuel Cells." (1996). Web.
- [11] Chludzinski, P.J., I.F Danzig, A.P. Fickett, and D.W. Craft. "Regenerative Fuel Cell Development for Satellite Secondary Power." (1973). Web.
- [12] A, Toorian, Diaz K, and Lee S. "The Cubesat Approach to Space Access." (2008). Web.
- [13] Zeledon and Peck, "Electrolysis Propulsion for CubeSat-Scale Spacecraft," AIAA SPACE (2012). Web.
- [14] Zeledon and Peck, "Electrolysis Propulsion for CubeSat-Scale Spacecraft," AIAA SPACE (2013). Web.
- [15] Wang, Ping, and Yuri B. Shtessel. "Satellite Attitude Control Using Only Magntic Torquers." (1998). Web.
- [16] Puig-Suari, Jordi, Jeremy Schoos, Clark Turner, Tyler Wagner, Ryan Connolly, and Richard P. Block. "CubeSat Developments at Cal Poly: The Standard Deployer and PolySat." (2000). Web.

References

- [17] "Hydros Water Electrolysis Thruster." Tethers Unlimited. 1 Jan. 2014. Web. http://www.tethers.com/HYDROS.html>.
- [18] "Busek CubeSat Propulsion Systems." Busek Space Propulsion and Systems. Web. http://busek.com/cubesatprop_main.htm>.
- [19] Levie, R. De. "The Electrolysis of Water." Journal of Electroanalytical Chemistry 476 (1999): 92-93. Web.
- [20] AFG, Smith, and Newborough /m. "Low-cost Polymer Electrolysers and Electrolyser Implementation Scenarios for Carbon Abatement." (2004). Web.
- [21] Fritz, David L. PEM Electrolyser. Digital image. Web.
- [22] PEM Electrolyser. Digital image. Horizon Educational. Web.
- [23] "Micro Reaction Wheel." Blue Canyon Tech. Web. http://bluecanyontech.com/portfolio-posts/reaction-wheels/>.
- [24] Ebbing, Darrel D. General Chemistry. 3rd ed. Houghton Mifflin, 1990. Print.
- [25] Meewisse, J.W, and C.A.I Ferreira. "Freezing Point Depression of Various Ice Slurries." (2001). Delft University of Technology. Web.
- [26] J, Mueller, Hofer R, and Ziemer J. "Survey of Propulsion Technologies Applicable to CubeSats." (2010). Jet Propulsion Laboratory, National Aeronautics and Space Administration: Pasadena, CA. Web
- [27] Sutton, George P., and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion Elements. 8th ed. Wiley. 301-305. Print.
- [28] E.A, Belbruno,, and Miller J.K. "Sun-Perturbed Earth-to-Moon Transfers With Ballistic Capture,"" Journal of Guidance, Control, and Dynamics, 16.4 (1993): 770-75. Web.
- [29] Braeunig, Robert A. "Rocket Propulsion." Rocket and Space Technology. 1 Jan. 2012. Web. http://www.braeunig.us/space/propuls.htm>.
- [30] Carpenter, C.B, D. Schmuland, J. Overly, and R. Masse. "CubeSat Modular Propulsion Systems Product Line Development Status and Mission Applications." (2013). Web. https://www.rocket.com/files/aerojet/documents/CubeSat/AIAA-2013-3760.pdf>.

Questions !?

Specific Impulse

• For a control volume in case of Rocket Motor

$$\frac{\dot{Q} - \dot{W}_{e}}{\dot{m}} = \left(h_{e} + \frac{V_{j}^{2}}{2} + gz_{e}\right) - \left(h_{c} + \frac{V_{c}^{2}}{2} + gz_{c}\right) \quad (1)$$

$$\frac{V_j^2}{2} = h_c - he \quad (2)$$

• For short pulses, estimated Isp : $361.66 < I_{sp} < 424.35$

Sutton, George P., and Oscar Biblarz. "Thrust Chambers." Rocket Propulsion Elements. 8th ed. Wiley. 301-305. Print.

Nozzle Design Analysis

$$P_{t} = P_{c} \left(1 + \frac{k-1}{2}\right)^{\frac{-k}{k-1}}$$
 (4)

$$T_{t} = \frac{T_{c}}{(1 + \frac{k - 1}{2})}$$
(5)

$$A_{t} = \frac{q}{P_{t}} \sqrt{\frac{R \times T_{t}}{M \times k}} \qquad (6)$$

Calculations	
Mass Flow Rate (g/s)	1
Specific Heat Ratio	1.32
Chamber Pressure (N/m ²)	6×10^{5}
Nozzle Throat Pressure	
(N/m^2)	3.2×10^{5}
Chamber Temperature (K)	1300
Nozzle Throat	
Temperature (K)	1120
Nozzle Throat Area (m ²)	1.9×10-6
Nozzle Throat Diameter	
(mm)	0.78

Braeunig, Robert A. "Rocket Propulsion." Rocket and Space Technology. 1 Jan. 2012. Web. http://www.braeunig.us/space/propuls.htm>.

Combustion Chamber Design Analysis

 $L^{*} = \frac{V_{c}}{A_{t}} \quad (7)$ $V_{c} = A_{1}L_{1} + A_{1}L_{c}(1 + \sqrt{A_{t}/A_{1}} + A_{t}/A_{1}) \quad (8)$

Calculations

Volume of Chamber	
(kg/m^3)	4.5×10 ⁻⁵
Diameter of Cylindrical	
Chamber (cm)	2.5
Area of Cylindrical	
Chamber (m ²)	4.9×10 ⁻⁴
Length of Cylindrical	
Chamber (m)	0.05
Nozzle Throat Diameter	
(mm)	0.78
Nozzle Throat Area (m ²)	4.8×10-7
Length of Converging	
Cone Frustum (m)	0.041

Braeunig, Robert A. "Rocket Propulsion." Rocket and Space Technology. 1 Jan. 2012. Web. < http://www.braeunig.us/space/propuls.htm>.

Mass And Volume Budget

Component	Mass (kg)
Propellant	9.5
PEM Electrolyzer(6 Units)	0.2
Structure	2
Payload and Electronics	2

Component	Volume (kg/m ³)
Propellant Tank	7 × 10 ⁻³
Thrust Chamber	4.5×10^{-5}
PEM Electrolyzer	2.5 × 10 ⁻⁵
Payload and Electronics	3 × 10 ⁻³

Energy Comparison

- Energy required to electrolyze 1g of water = 13.5 J
- Energy required to keep water in liquid state for 6U at LEO = 80 J
- Heat Energy Released = 1.5 J
- Heat transferred by thrust chamber = 6 J
 - Ablative Material (k) = 0.5 W / m-K

Spin Rate Calculation

- Choice of Spin Rate decided by Bond Number $B_o = \frac{\Delta \rho \ a \ L^2}{\sigma}$
- Minimum Spacecraft Spin

$$\boldsymbol{\omega} = \left(\frac{\boldsymbol{B}_{o}\,\boldsymbol{\sigma}}{\Delta\boldsymbol{\rho}\,\boldsymbol{r}\,\boldsymbol{L}^{2}}\right)^{\frac{1}{2}}$$

• $\omega = 1.3 \text{ rad/s}$

Introduction

• What is a CubeSat ?

- Spacecraft
- Discrete but scalable
- 1U 1.33 kg 10cm × 10cm × 10cm

Motivation

- Lower schedule and cost
- Advances in satellite development
- Low cost launch opportunities
- Reduced risk for primary payload
- Secondary payloads for interplanetary trajectories

Nozzle Design

Mass Flow Rate (g/s)	1
Specific Heat Ratio	1.32
Chamber Pressure (N/m ²)	6×10 ⁵
Nozzle Throat Pressure (N/m ²)	3.2×10 ⁵
Chamber Temperature (K)	1300
Nozzle Throat Temperature (K)	1120
Nozzle Throat Area (m ²)	1.9×10 ⁻⁶
Nozzle Throat Diameter (mm)	0.78

Braeunig, Robert A. "Rocket Propulsion." Rocket and Space Technology. 1 Jan. 2012. Web. http://www.braeunig.us/space/propuls.htm>.

Combustion Chamber Design Analysis

Volume of Chamber (kg/m ³)	4.5×10 ⁻⁵
Diameter of Cylindrical Chamber (cm)	2.5
Area of Cylindrical Chamber (m ²)	4.9×10 ⁻⁴
Length of Cylindrical Chamber (cm)	5
Length of Converging Cone Frustum (cm)	4.1

Braeunig, Robert A. "Rocket Propulsion." Rocket and Space Technology. 1 Jan. 2012. Web. http://www.braeunig.us/space/propuls.htm>.

Results – 20% NaCl Solution

Results – 10% LiCl Solution

Results – 20% LiCl Solution

Contributions

- Showed electrolysis can be performed below 0 °C using LiCl and NaCl brine solutions.
 - Tradeoffs in propulsive performance and thermal mgmt
- Came up with a design of an electrolysis propulsion system for current state of the art 6U CubeSat
- Proposed electrolysis propulsion offers 5-8 fold advantage over current methods
 - Enabling technology
 - Moon Orbiter mission from low earth orbit.
 - Mars Orbiter mission from an earth escape trajectory

Previous Research

- 0.8N Thrust
- 300s I_{sp}
 - Attitude Control Module Included

Hydros - Tether's Unlimited Inc.

Motivation

