IRIS VERSION 2 DEEP SPACE COMMUNICATIONS, NAVIGATION, AND RADIO SCIENCE FOR SMALL SPACE CRAFT

Courtney Duncan

Jet Propulsion Laboratory – California Institute of Technology

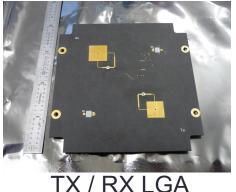
Interplanetary Small Satellite Conference 4

Santa Clara University

2015 April 27

© 2015 California Institute of Technology. Government sponsorship acknowledged.

Iris Version 1 Transponder, 2014

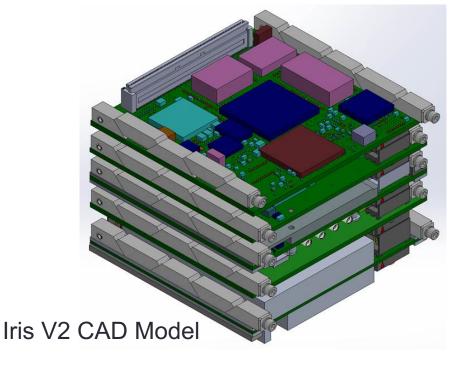


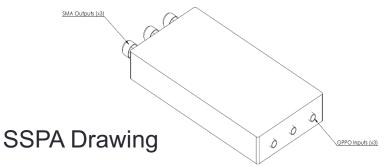
Iris V1 Prototype Stack

- JPL's INSPIRE Mission
 - Two 3U CubeSats
 - 10 M km deep space
 - 90 day max, COTS parts
- In Hibernation June 2014
 - Waiting launch opportunity

Marina-2 Virtex 5 Modem Processor Power Supply Board, 13 W @ 7.5 VDC X-Band Receiver 7.2 GHz X-Band Exciter 8.4 GHz 0.25 W RF output Independent, selectable antennas (Amp power switching, not RF switching) 2 transmit, 2 receive

- Firmware Modems CCSDS
 - DSN compatibility certified
 - Reed-Solomon and Convolutional Codes
- SPI spacecraft interface
- Full Duplex
 - Coherent Doppler
 - Range
 - Command
 - Telemetry
- FireCode




Iris V2 from V1 Lessons Learned

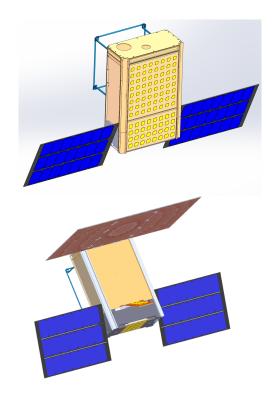
- Higher power output needed for truly deep space
 - Hundreds of millions of km
 - A few Astronomical Units
 - More distant is likely better served by a larger mission using Universal Space Transponder (UST) and/or proximity operations
- Missions of years rather than months, just to get there
 - As much hardening as is 'affordable'
- C&DH interface
 - Commands versus 'peeks and pokes'
- CubeSats are small for 10s of W of heat dissipation, requires intentional design
 - Wedgelocks
 - SSPAs on radiators semi-custom spacecraft design

Iris V2 Description, 2015

- Four Board Stack plus external SSPAs
 - X-Band Exciter
 - SSPA 4 W RF out
 - X-Band Receiver
 - UHF Receiver (slice architecture)
 - RadiX Virtex-6 board
 - Power Supply Board
 - 27 W input CBE @ 12 VDC
 - RX-only, Digital-only lower powers
- 500 g, 0.5 U
 - 6U Spacecraft compatible
- 2-3 year design life

Iris V2 Features

- All Iris V1 Features, plus:
- Delta DOR navigation support
 - Plane of sky technique in cooperation with DSN
- Direct carrier modulation with residual carrier
- Turbo Codes, Manchester, and scrambling
- Command and Telemetry Dictionary
- Independent, selectable antennas
 - Power switching to amplifiers, not radio frequency switching
 - 3 transmit
 - 3 receive


Iris V2 Features

- CPU
 - Gaissler LEON3-FT softcore on Virtex 6
- Memory
 - 32 Mbit non-volatile NOR-Flash (radiation tolerant)
 - Multiple FPGA bitfiles (8.8 Mbit each)
 - Backup copies and future reprogramability
 - Vector tables for TurboCoding, (2 Mb)
 - Boot PROM and software image storage (for LEON)
 - Boot PROM copies application to SRAM for execution
 - 20 Mbyte of volatile SRAM (radiation tolerant)
 - One 16 Mbyte part / One 4 Mbyte part for EDAC
 - LEON program execution, stack, and storage
 - Data storage

CubeSat X-Band Antennas

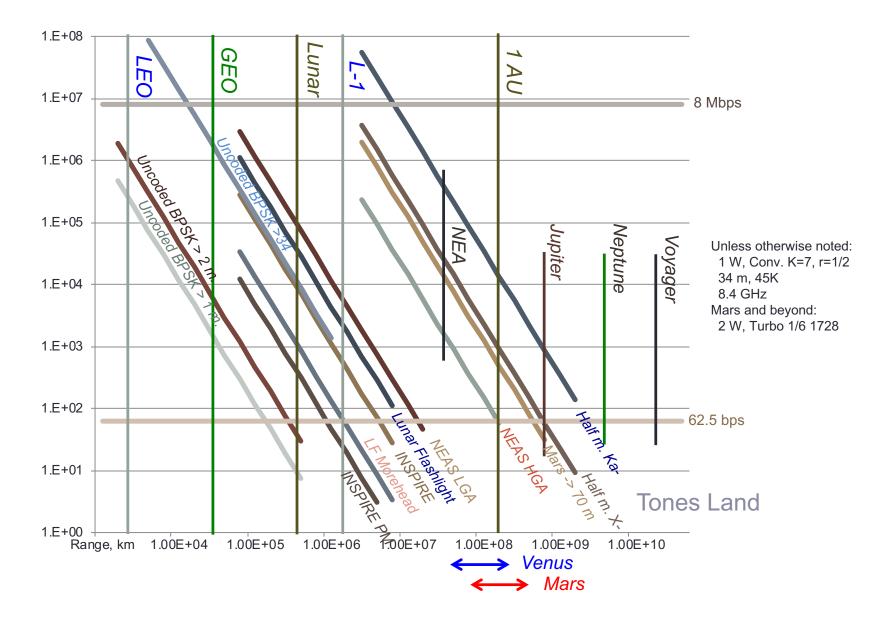
- Estimates to DSN 34 m.
 - For 20 m., 100 Kelvin, divide by 10
 - For 70 m., multiply by 4
- LGA, included with Iris
 - 10s of bps (semaphores) from Mars
 - (at arrival ~1 AU)
- MGA side of a CubeSat
 - Needs pointing
 - Hundreds of bps from Mars
- HGA Deployable (MarCO)
 - Needs good pointing
 - 2000 bps from Mars
 - (at arrival ~1 AU)
 - Ka-Band 3U Turkey Tail version also in development

Iris V2 Status and Availability

- Missions
 - MarCO flying prototypes, delivery August 2015 launch March 2016
 - EM-1 secondaries, various, launch 2018
- MarCo flight boards in work now
 - Boards built and in test
 - Firmware and software being written
 - Delivery to MarCO and DSN compatibility August 2015
- Ground Support Equipment (GSE) in progress
- Production copies to be produced
 - By a to-be-named partner company
- Orders / Contracts expected third quarter 2015
 - EM-1 and later missions
- Early deliveries first quarter 2016
- Cost is dependent on mission difficulty and market volume
 - JPL is happy to help assess the cost

Summary

- JPL and Deep Space Network (DSN) are committed to supporting deep space SmallSats and CubeSats
- Initial Iris V2 testing for MarCO project has been successful
- JPL working towards a commercial implementation
 - Success depends on the market



BACKUP

Abstract

 The Iris CubeSat Compatible, deep space transponder is now in Version 2 development for several planned deep space CubeSat missions. Iris V2 features X-Band power output of four watts, designed flight longevity of 2-3 years in deep space, and proper thermal management within a SmallSat context. These and other improved Iris features enable telecommand, telemetry, and radio science from destinations up to a few Astronomical Units from Earth.

Iris Downlink Rates

Iris $(I \rho \varsigma) - (not an acronym)$

The goddess Iris is associated with: communication, messages, the rainbow, new endeavors